图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中.然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性.基于此,提出一种融合层注意力机制的多视角图对比学习推荐方法.一方面,该方法提出2种不同视角下的3种对比学习,在视图级视角下,通过对原始图添加随机噪声构建扰动增强视图,利用奇异值分解(singular value decomposition)重组构建SVD增强视图,对这2个增强视图进行视图级对比学习;在节点视角下,利用节点间的语义信息分别进行候选节点和候选结构邻居对比学习,并将3种对比学习辅助任务和推荐任务进行多任务学习优化,以提高节点嵌入的质量,从而提升模型的泛化能力.另一方面,在图卷积网络学习用户和项目的节点嵌入时,采用层注意力机制的方式聚合最终的节点嵌入,提高模型的高阶连通性,以缓解过度平滑问题.在4个公开数据集LastFM,Gowalla,Ifashion,Yelp上与10个经典模型进行对比,结果表明该方法在Recall,Precision,NDCG这3个指标上分别平均提升3.12%,3.22%,4.06%,这说明所提方法是有效的.
长尾现象在序列推荐系统中长期存在,包括长尾用户和长尾项目两个方面。虽然现有许多研究缓解了序列推荐系统中的长尾问题,但大部分只是单方面地关注长尾用户或长尾项目。然而,长尾用户和长尾项目问题常常同时存在,只考虑其中一方会导致另一方性能不佳,且未关注到长尾用户、长尾项目各自的信息匮乏问题。提出一种利用GRU双分支信息协同增强的长尾推荐模型(long-tail recommendation model utilizing gated recurrent unit dualbranch information collaboration enhancement,LT-GRU),从用户与项目两个方面共同缓解长尾问题,并通过协同增强的方式丰富长尾信息。该模型由长尾用户和长尾项目双分支组成,每个分支分别负责各自的信息处理,并相互训练以充实另一方的信息。同时,引入一种偏好机制,通过演算用户与项目的影响因子,以动态调整用户偏好与项目热度,进一步缓解长尾推荐中信息不足问题。在Amazon系列的6个真实数据集上与6种经典模型进行实验对比,相较于长尾推荐模型中最优的结果,所提模型LT-GRU在HR与NDCG两个指标上分别平均提高2.49%、3.80%。这表明,在不牺牲头部用户和热门项目推荐性能的情况下,有效地缓解了长尾用户和长尾项目问题。
暂无评论