硅微谐振压力传感器检测信号的幅值稳定性与频率跟踪性对其性能至关重要,但目前幅值控制与频率跟踪方法的非线性特征会造成谐振器振动频率的非线性变化,限制了传感器综合精度的进一步提升。为降低谐振器振动频率非线性变化的影响,基于自动增益控制(Automatic gain control,AGC)的线性化分析理论,建立高Q值硅微谐振压力传感器自动增益控制和相位补偿模型,分析AGC幅值控制和频率跟踪线性化的控制特性,以及相位补偿对闭环控制性能的影响。基于自动增益控制(AGC)的自激驱动被证实可使谐振器稳定工作于谐振频率,且保持幅值稳定,通过Simulink/PSpice建模仿真,验证非线性系统线性化分析的准确性。同时基于自动增益控制与相位补偿模型设计与制作的硅谐振压力传感器控制电路,经测试可使整表频率稳定性优于±0.05 Hz@采样周期5 ms,综合精度优于±0.02%FS,实现自动增益控制在谐振压力传感器的工程化应用,解决了谐振器频率跟踪非线性引起的传感器性能下降问题,可广泛应用于高Q值谐振器闭环控制。
传统稀疏表示方法因其在冲击类信号特征提取中的独特优势而在故障诊断领域被广泛研究。然而,传统稀疏表示理论基于对干扰噪声的高斯分布假设,导致其难以适用于多种噪声分布混合的实际现场。针对上述问题,提出一种混合高斯噪声条件下的冲击类故障特征稀疏表示方法。基于传统稀疏表示理论的贝叶斯框架,借助混合高斯分布的万有逼近性质,建立了基于db4小波字典的混合高斯噪声稀疏分解模型,并推导了基于EM(Expectation-maximum,EM)和ADMM(Alternating direction method of multipliers,ADMM)的优化求解算法用于模型求解。仿真和实验结果表明,所提出的方法能够有效提取混合噪声干扰下的冲击类微弱故障特征信号。
暂无评论