对车联网中多个车辆用户设备(Vehicle User Equipment,VUE)卸载过程中的资源分配问题进行研究,提出一种时延感知的计算卸载和资源分配策略。采用支持向量机将卸载任务根据时延和能耗的要求选择移动边缘计算(Mobile Edge Computing,MEC)...
详细信息
对车联网中多个车辆用户设备(Vehicle User Equipment,VUE)卸载过程中的资源分配问题进行研究,提出一种时延感知的计算卸载和资源分配策略。采用支持向量机将卸载任务根据时延和能耗的要求选择移动边缘计算(Mobile Edge Computing,MEC)服务器辅助卸载和VUE辅助卸载两种处理模式,考虑MEC服务器的计算资源分配以及车到车链路复用蜂窝链路的干扰问题,建立最小化总成本的优化问题。最后,使用深度竞争双Q网络算法完成不同处理模式下相应的资源分配过程。为了验证所提策略的有效性,将其与基于深度Q网络算法的资源分配策略、基于正交多址接入的资源分配策略和随机资源分配策略等3种策略相比。验证结果表明,所提策略可以在最大时延限制内有效降低卸载总成本。
为了增加网络吞吐量并改善用户体验,提出一种基于Q学习(Q-learning)的多业务网络选择博弈(Multi-Service Network Selection Game based on Q-learning,QSNG)策略。该策略通过模糊推理和综合属性评估获得多业务网络效用函数,并将其用作Q...
详细信息
为了增加网络吞吐量并改善用户体验,提出一种基于Q学习(Q-learning)的多业务网络选择博弈(Multi-Service Network Selection Game based on Q-learning,QSNG)策略。该策略通过模糊推理和综合属性评估获得多业务网络效用函数,并将其用作Q-learning的奖励。用户通过博弈算法预测网络选择策略收益,避免访问负载较重的网络。同时,使用二进制指数退避算法减少多个用户并发访问某个网络的概率。仿真结果表明,所提策略可以根据用户的QoS需求和价格偏好自适应地切换到最合适的网络,将其与基于强化学习的网络辅助反馈(Reinforcement Learning with Network-Assisted Feedback,RLNF)策略和无线网络选择博弈(Radio Network Selection Games,RSG)策略相比,所提策略可以分别减少总切换数量的80%和60%,使网络吞吐量分别提高了7%和8%,并且可以保证系统的公平性。
暂无评论