多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能.
图聚类可以发现网络中的社区结构,是复杂网络分析中的一项重要任务。针对不同节点的聚类难度各异的问题,提出了一种基于节点聚类复杂度的图聚类算法(Graph Clustering Algorithm Based on Node Clustering Complexity,GCNCC),用于判断...
详细信息
图聚类可以发现网络中的社区结构,是复杂网络分析中的一项重要任务。针对不同节点的聚类难度各异的问题,提出了一种基于节点聚类复杂度的图聚类算法(Graph Clustering Algorithm Based on Node Clustering Complexity,GCNCC),用于判断节点的聚类复杂度,为聚类复杂度低的节点赋予伪标签,利用伪标签提供的监督信息降低其他节点的聚类复杂度,进而得到网络聚类结果。GCNCC包括节点表示、节点聚类复杂度判别和图聚类3个主要模块。节点表示模块得到保持网络集聚性的表示;节点聚类复杂度判别模块用于判断网络中的低聚类复杂度节点,并利用低聚类复杂度节点的伪标签信息来优化更新网络中其他节点的聚类复杂度;图聚类模块采用标签传播方法,将低聚类复杂度节点标签传播给高聚类复杂度节点,以得到聚类结果。在3个真实的引文网络和3个生物数据集上与9种经典算法进行对比,算法GCNCC在ACC,NMI,ARI和F1等方面均表现良好。
时序抽象作为分层强化学习的重要研究内容,允许分层强化学习智能体在不同的时间尺度上学习策略,可以有效解决深度强化学习难以处理的稀疏奖励问题。如何端到端地学习到优秀的时序抽象策略一直是分层强化学习研究面临的挑战。Option-Critic(OC)框架在Option框架的基础上,通过策略梯度理论,可以有效解决此问题。然而,在策略学习过程中,OC框架会出现Option内部策略动作分布变得十分相似的退化问题。该退化问题影响了OC框架的实验性能,导致Option的可解释性变差。为了解决上述问题,引入互信息知识作为内部奖励,并提出基于互信息优化的Option-Critic算法(Option-Critic Algorithm with Mutual Information Optimization,MIOOC)。MIOOC算法结合了近端策略Option-Critic(Proximal Policy Option-Critic,PPOC)算法,可以保证下层策略的多样性。为了验证算法的有效性,把MIOOC算法和几种常见的强化学习方法在连续实验环境中进行对比实验。实验结果表明,MIOOC算法可以加快模型学习速度,实验性能更优,Option内部策略更有区分度。
暂无评论