针对基于静态场景假设的传统的同时定位与地图构建(simultaneous localization and mapping,SLAM)在动态场景中鲁棒性差、位姿估计准确率低的问题,提出了一种基于深度学习的语义视觉SLAM方法.该方法将语义分割技术与运动一致性检测算法...
详细信息
针对基于静态场景假设的传统的同时定位与地图构建(simultaneous localization and mapping,SLAM)在动态场景中鲁棒性差、位姿估计准确率低的问题,提出了一种基于深度学习的语义视觉SLAM方法.该方法将语义分割技术与运动一致性检测算法相结合,首先用Mask R-CNN网络对图像进行语义分割,建立动态对象的先验语义信息,然后通过运动一致性检测算法进一步剔除属于动态物体的特征点,最后用静态特征点进行特征匹配和位姿估计.基于慕尼黑工业大学(Technical University of Munich,TUM)公开数据集对系统进行实验,结果表明,该系统在动态环境中较传统的ORB-SLAM2系统和DS-SLAM系统明显降低了绝对轨迹误差和相对位姿误差,提高了SLAM系统位姿估计的准确性和鲁棒性.
脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,本文设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,...
详细信息
脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,本文设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成脱硫过程异常点的检测。本文首次提出使用AttLSTM网络自编码器对脱硫过程进行离群点检测,并且该网络模型同样首次应用于脱硫过程的辨识任务中。从更深的意义上讲,本文尝试使用深度学习模型对复杂系统进行辨识,所建立的AttLSTM网络之前未出现在系统辨识领域,该网络的出现可以丰富辨识模型的选择,同时为人工智能技术在系统辨识领域和控制领域的应用和推广提供参考。实验结果表明,相比于之前文献出现的脱硫过程建模方法,所提方法在不同性能指标上均具有更好的性能,由此可以证明深度AttLSTM网络在脱硫场景下的有效性。
暂无评论