目的:模拟现场快速FOB检测筛选后的阳性结果试纸条,探索阳性FOB试纸条用于DNA检测的可行性以及DNA检测的最佳区域。为此类案件后续的DNA检测提供新的实验思路,为侦查提供方向和线索。方法:以模拟现场快速FOB检测的10份阳性FOB试纸条(6男4女)为研究对象,将试纸条分为3个不同区域(A加样区,B反应区,C检测线),选用Chelex-100法对不同分区样本进行DNA的提取,用VFP (AB公司)试剂盒进行PCR扩增,用AB公司的3500 xl进行电泳,并且选用GeneMapper ID-X 1.5软件进行STR分型。通过直接计数法统计不同区域STR分型的得分情况,并且通过非参数检验的方法Kruskal-Wallis检验进行组间数据分析。结果:10份阳性FOB试纸条(6男4女)的3个不同区域不同程度地检测出来了人体特异性STR分型,三个区域得分如下:A区域最高得分43分、最低得分12分、平均得分21.4分;B区域最高得分50分、最低得分46分、平均得分48.9分;C区域最高得分14分、最低得分1分、平均得分7.8分;通过Kruskal-Wallis检验进行组间比较,得到P值为Objective: To explore the feasibility of positive FOB test strip for DNA detection and the optimal region of DNA detection by simulating the positive test strip screened by on-site rapid FOB detection. It provides new experimental ideas for the subsequent DNA detection of such cases, and provides direction and clues for investigation. Methods: Ten positive FOB test strips (6 males and 4 females) simulated on-site rapid FOB detection were used as the research objects. The test strips were divided into three different regions (A sampling area, B reaction area, C detection line). Chelex-100 method was used to extract DNA from samples in different regions. PCR amplification was performed with VFP (AB) kit, electrophoresis was performed with 3500 xl of AB company, and STR typing was performed using GeneMapper ID-X 1.5 software. The scores of STR typing in different regions were counted by direct counting method, and the data between groups were analyzed by Kruskal-Wallis test. Results: Human-specific STR typing was detected in three different regions of 10 positive FOB test strips (6 males and 4 females) to varying degrees. The scores of the three regions were as follows: the highest score of A region was 43 points, the lowest score was 12 points, and the average score was 21.4 points. The highest score of area B was 50 points, the lowest score was 46 points, and the average score was 48.9 points. The highest score of region C was 14 points, the lowest score was 1 point, and the avera
目的研究大头金蝇蛹的发育调控、环境适应、表观调控等问题,以获得不同发育时期转录组数据,为法医学应用奠定基础。方法饲养大头金蝇,待其化蛹,从开始化蛹至羽化出成虫,每24h收集1次,每次收集3粒蝇蛹,-80℃保存备用。采用Illumina Hiseq4000进行高通量测序,获得的非重复序列基因(Unigene),使用NCBI比对工具BLAST分别与NR、STRING、SWISS-PROT瑞士蛋白质数据库(包括Pfam)、GO数据库、COG数据库、KEGG数据库进行比对,获得相应的注释信息,采用每百万测序碱基中基因外显子每千个碱基长度中所包含的测序片断数(fragments per kilobase of exon model per million mapped reads,FPKM)方法计算测序所得Unigene在6个不同发育时期大头金蝇蛹的表达量,并以不同发育时期FPKM表达量比值的log2倍数绝对值大于1(即log2|FC|>1)及错误发现率小于0.05为标准进行差异基因筛选。结果平均温度为25.6℃时,大头金蝇蛹从开始化蛹至羽化出成虫历时6d,共获得43408条Unigene,平均长度为905bp,在NR、SWISS-PORT、Pfam、STRING、KEGG数据库分别有32500、18720、13542、9191、18720条Unigene获得注释,将不同发育时期蛹两两比较进行差异基因分析,差异表达基因数有801~5307个,差异表达基因总数45676个。结论大头金蝇蛹转录组数据在不同发育时期基因表达具有差异性,为进一步探究嗜尸性蝇蛹各个时期转录组变化提供了良好的基础,为挖掘大头金蝇蛹发育相关基因提供依据。
暂无评论