家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关联等隐含信息.在大数据知识工程BigKE模型的基础上,提出了一个结合HAO智能模型的碎片化数据融合框架FDF-HAO(fragmented data fusion with human intelligence,artificial intelligence and organizational intelligence),阐述了架构中每层的作用、关键技术和需要解决的问题,并以家谱数据为例,验证了该数据融合框架的有效性.最后,对碎片化数据融合的前景进行展望.
在资源受限条件下,根据数据挖掘任务在执行过程中实时产生的资源和任务状态来准确地预测任务执行时间是非常重要的。为有效地使用时间序列数据实现准确预测,提出一种降载策略来确定预测的切入点和数据处理方案。该策略使用动态时间规整(Dynamic Time Warping,DTW)距离度量子序列与整个序列之间相似度的变化以确定用于预测的数据,然后利用小波变换计算小波系数并提取小波系数的能量值作为预测的特征,最后预测任务执行时间。实验结果表明,该方法提取的特征信息包含原序列较多信息,在预测任务执行时间方面具有较高的准确性。
暂无评论