针对基本灰狼优化算法(grey wolf optimizer,GWO)在求解复杂优化问题时存在解精度低、探索与开发能力不平衡、收敛速度慢和易陷入局部最优的缺点,提出一种基于多策略融合的改进灰狼优化算法。首先,设计一种基于正弦函数的非线性过渡参...
详细信息
针对基本灰狼优化算法(grey wolf optimizer,GWO)在求解复杂优化问题时存在解精度低、探索与开发能力不平衡、收敛速度慢和易陷入局部最优的缺点,提出一种基于多策略融合的改进灰狼优化算法。首先,设计一种基于正弦函数的非线性过渡参数策略替代原灰狼优化算法中的线性递减策略,以实现算法从勘探到开发的良好过渡;其次,利用个体自身历史最佳位置和决策层个体共同引导群体进行搜索,以加速算法收敛速度和提高寻优精度;然后,在当前最优灰狼个体上引入小孔成像学习策略产生新的候选个体,以降低算法陷入局部最优的概率。选取6个基准测试函数进行数值实验。结果表明:改进算法在求解精度和收敛速度指标上均优于其他比较算法。最后,将改进算法用于求解特征选择问题,对10个基准数据集的仿真结果表明,改进算法能有效地提高分类精度和选择最优特征。
针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数...
详细信息
针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memoryguided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。
暂无评论