超低碳钢显微组织为铁素体,在制样过程中极易出现划痕和晶界腐蚀不清晰的现象,严重影响金相组织分析。同时,显微组织特征的分析结果严重依赖于专家经验,受主观因素影响较大且效率低。为了高效获得超低碳钢显微组织特征信息,基于超低碳钢金相图像数据集,采用归一化、自适应阈值法处理图像,增强图像对比度;融合自注意力机制(Self-Attention,SA)和循环回归生成对抗神经网络(CycleGan),开发基于CycleGan+SA的晶界增强算法;建立超低碳钢显微组织特征强化模型,实现了显微组织图像的自动处理与晶界信息的特征强化。在此基础上,采用分水岭分割算法对晶界强化后的显微组织图像进行精细化分析。结果表明,CycleGan+SA算法可以有效去除原始金相图像中的划痕并补全晶界模糊区域,实现超低碳钢晶界特征强化。相比原始的CycleGan算法,引入注意力机制后,CycleGan+SA算法可以实现更清晰的晶粒分割,图像识别精确度P值由97.43%提升至98.75%,综合评价指标F值由97.49%提升至98.73%。在显微组织精细化分析方面,通过与常用分析软件对比,超低碳钢显微组织特征强化模型与Image J软件测定的晶粒尺寸平均误差为1.2个晶粒,与Image Pro Plus软件测定的晶界比例误差为0.008个百分点,模型与软件统计结果吻合较好,具备一定的应用前景。
暂无评论