增量式运动恢复结构(structure from motion, SfM)已经成为无人机影像空中三角测量的常用解决方案。考虑到无人机影像的特点,增量式SfM在效率、精度和稳健性方面的性能有待提高。首先给出了增量式SfM无人机影像空中三角测量的技术流程,...
详细信息
增量式运动恢复结构(structure from motion, SfM)已经成为无人机影像空中三角测量的常用解决方案。考虑到无人机影像的特点,增量式SfM在效率、精度和稳健性方面的性能有待提高。首先给出了增量式SfM无人机影像空中三角测量的技术流程,然后从特征匹配和几何解算两个方面对其关键技术进行了综述,最后从数据采集方式改变、大场景影像处理、通信与硬件技术发展、深度学习融合等方向,展望了增量式SfM无人机影像空中三角测量的挑战和后续研究,总结本领域的现有研究,为相关研究者提供参考。
高光谱遥感影像具有光谱分辨率极高的特点,承载了大量可区分不同类型地物的诊断性光谱信息以及区分亚类相似地物之间细微差别的光谱信息,在目标探测领域具有独特的优势。与此同时,高光谱遥感影像也带来了数据维数高、邻近波段之间存在大量冗余信息的问题,高维度的数据结构往往使得高光谱影像异常目标类和背景类之间的可分性降低。为了缓解上述问题,本文提出了一种基于波段选择的协同表达高光谱异常探测算法。首先,使用最优聚类框架对高光谱波段进行选择,获得一组波段子集来表示原有的全部波段,使得高光谱影像异常目标类与背景类之间的可分性增强。然后使用协同表达对影像上的像元进行重建,由于异常目标类和背景类之间的可分性增强,对异常目标像元进行协同表达时将会得到更大的残差,异常目标像元的输出值增大,可以更好地实现异常目标和背景类的分离。本文使用了3组高光谱影像数据进行异常目标探测实验,实验结果表明,该方法与其他现有高光谱异常目标探测算法对比,曲线下面积AUC(Area Under Curve)值更高,可以更好地实现异常目标与背景分离,能够更有效地对高光谱影像进行异常目标探测。
暂无评论