窄路段作为交通场景中不可避免的瓶颈路段,其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性,同时考虑适用模型的准确度,提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法(IWOA)-门控循环单元(GRU)的窄路短时车流量预测模型,以SUMO(Simulation of Urban Mobility)仿真数据进行了实证研究。对比实验结果显示,IWOA具有较好的全局性、收敛速度且更加稳定。基于IWOA-GRU的窄路短时车流量预测模型,均方根误差(RMSE)指标相较于WOA-GRU、PSO-GRU、长短期记忆神经(LSTM)网络分别降低10.96%、28.71%、42.23%,平均绝对百分比误差(MAPE)指标分别降低13.92%、46.18%、52.83%,有较为显著的准确性和稳定性。
暂无评论