针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...
详细信息
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关注重要图像特征,以减小水印嵌入引起的图像失真;在解码器部分,设计多尺度特征提取模块,以捕获不同层次的图像细节。实验结果表明,在COCO数据集上与深度水印模型HiDDeN(Hiding Data with Deep Networks)相比,所提方法生成的含水印图像的峰值信噪比(PSNR)和结构相似度(SSIM)分别增加了11.63%和1.29%;所提方法针对dropout、cropout、crop、高斯模糊和JPEG压缩的水印提取平均误比特率(BER)降低了53.85%;此外,消融实验结果验证了添加注意力模块和多尺度特征提取模块的方法有更好的不可见性和鲁棒性。
暂无评论