轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主...
详细信息
轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方...
详细信息
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。
暂无评论