在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位...
详细信息
在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位准确率和精度。基于此,本文提出了时间反演(Time Reversal,TR)联合到达时间(Time Of Arrival,TOA)测距的指纹定位技术。首先在定位区域建立坐标系,离线阶段采集两个已知参考点至网格点的距离作为指纹构建数据库,以坐标距离作为指纹可以忽略环境对指纹数据的影响,进而提高定位准确率;其次,在线阶段通过TR技术的空时聚焦性联合TOA,测出距离作为新指纹,与距离指纹进行对比匹配,根据相似度得出目标点的位置坐标。最后通过仿真结果得出:本方案实现了6 m的室内定位,并且定位误差在0.44 m以内,对比传统指纹定位,减小了指纹数据复杂度,提高了系统的鲁棒性和定位精度。
在网络功能虚拟化(Network Function Virtualization,NFV)环境下,保证用户服务功能链(Service Function Chain,SFC)服务质量的同时节约资源消耗,降低运营成本,对运营商来说至关重要。联合考虑SFC部署和无线接入网资源分配,提出一种基于...
详细信息
在网络功能虚拟化(Network Function Virtualization,NFV)环境下,保证用户服务功能链(Service Function Chain,SFC)服务质量的同时节约资源消耗,降低运营成本,对运营商来说至关重要。联合考虑SFC部署和无线接入网资源分配,提出一种基于深度强化学习的SFC多维资源联合分配算法。构建一种基于环境感知的SFC资源分配机制,建立用户时延要求、无线速率需求以及资源容量等约束下的SFC部署成本最小化模型。考虑到无线环境的动态变化,将此优化问题转化为一个无模型离散时间马尔科夫决策过程(Markov Decision Process,MDP)模型。由于该MDP状态空间的连续性和动作空间的高维性,采用深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)强化学习算法进行求解,得到最小化部署成本的资源分配策略。仿真结果表明,该算法可在满足性能需求及资源容量等约束的同时,有效降低SFC部署成本和端到端传输时延。
暂无评论