图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。
多目标回归(Multi-target Regression,MTR)是一种同时预测多个相互关联的连续型输出目标的机器学习问题。在多目标回归中,多个输出目标共享同一个特征表示,其主要挑战在于如何有效地发掘和利用输出目标之间的关联,以提高所有输出目标的预测准确性。文中提出了一种基于超网络的多目标回归方法(Multi-target Regression Method based on Hypernetwork,MTR-HN)。首先采用k-means算法对每个连续型输出目标进行一维聚类,然后根据聚类结果将多目标回归问题转化成多类别多标签分类问题,最后采用超网络模型对多类别多标签分类问题进行建模,构建最终的多目标回归预测模型。MTR-HN方法的优点在于:1)对输出空间离散化,能够降低模型过拟合的风险;2)采用超网络模型,能更有效地对输出目标之间的关联进行建模。在18个多目标回归数据集上进行的对比实验表明,文中提出的MTR-HN方法能够取得比现有方法更高的预测准确性。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的基于密度的聚类算法,它通过两个全局参数即半径Eps和最少点数MinPts,能够对任意形状的数据进行聚类,并自动确定类个数。但是,使用全局半径的DBSCAN对...
详细信息
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的基于密度的聚类算法,它通过两个全局参数即半径Eps和最少点数MinPts,能够对任意形状的数据进行聚类,并自动确定类个数。但是,使用全局半径的DBSCAN对于密度不均匀数据集的聚类效果较差,且无法对重叠数据集进行聚类。因此,定义了密度递减原则和局部半径,并根据k-近邻距离自动确定局部半径,从而提出了基于局部半径的DBSCAN算法(LE-DBSCAN);然后,通过考虑近邻的标签,对二支聚类结果的临界点和噪声点进行重新划分,从而提出了基于局部半径的三支DBSCAN算法(LE3W-DBSCAN)。将LE-DBSCAN和LE3W-DBSCAN与该领域的相关算法在UCI数据集和人工数据集上进行对比,实验结果表明,所提算法在常用的硬聚类指标和软聚类指标上都具有较好的表现。
暂无评论