针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7 (cross-scale YOLOv7, CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module, CFEM)和感受野特征增强模块(receptive field feature enhancement module, RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module, CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union, Shape IoU)替换完全交并比(complete intersection over union, CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。
在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位...
详细信息
在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位准确率和精度。基于此,本文提出了时间反演(Time Reversal,TR)联合到达时间(Time Of Arrival,TOA)测距的指纹定位技术。首先在定位区域建立坐标系,离线阶段采集两个已知参考点至网格点的距离作为指纹构建数据库,以坐标距离作为指纹可以忽略环境对指纹数据的影响,进而提高定位准确率;其次,在线阶段通过TR技术的空时聚焦性联合TOA,测出距离作为新指纹,与距离指纹进行对比匹配,根据相似度得出目标点的位置坐标。最后通过仿真结果得出:本方案实现了6 m的室内定位,并且定位误差在0.44 m以内,对比传统指纹定位,减小了指纹数据复杂度,提高了系统的鲁棒性和定位精度。
暂无评论