终端管控技术是指在不依附于运营商和用户的前提下,通过第三方设备对通信终端进行有效控制。为了解决管控成本高、时延大等问题,提出了面向不同场景的长期演进(long term evolution,LTE)管控方案,包括全覆盖管控方案和目标终端管控方案...
详细信息
终端管控技术是指在不依附于运营商和用户的前提下,通过第三方设备对通信终端进行有效控制。为了解决管控成本高、时延大等问题,提出了面向不同场景的长期演进(long term evolution,LTE)管控方案,包括全覆盖管控方案和目标终端管控方案。基于LTE终端定时同步的原理向终端发送同步诱导信号来完成对终端的吸附,构造跟踪区域更新拒绝信令和附着拒绝信令,根据信令所携带的不同核心网信息分别实现LTE终端全覆盖管控和目标终端管控。实验结果表明,提出的全覆盖管控方案能够阻断虚拟基站信号覆盖范围内所有LTE终端与外界进行通信,同时降低了管控成本。相比于传统LTE目标终端管控技术,目标终端管控方案优势在于不仅降低了管控时延,而且可以在目标用户无感知情况下完成其身份信息的检测并阻断包括长期演进语音承载(voice over long term evolution,VOLTE)终端在内的目标LTE终端与外界进行通信。
展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信号分类(Multiple Signal Classification,MUSIC)算法的双基地展开互质阵列MIMO雷达离开角(Direction of Departure,DOD)、到达角(Direction of Arrival,DOA)联合估计算法。算法通过增加约束并构造代价函数的方式,将二维MUSIC算法中的穷尽搜索二维谱峰转化为求解带约束二次优化问题,先后得到DOA、DOD,并且DOD与DOA自动配对。降维思想的引入使得算法无需二维搜索,因而复杂度显著下降。同时,得益于展开互质阵列MIMO雷达形成的虚拟阵列与大幅扩展的阵列孔径,文中提出的算法亦获得了显著提升的分辨率、自由度以及低信噪比下更为优异的估计性能。此外,子阵数目的互质消除了阵元间距大于半波长可能导致的相位模糊问题。仿真验证了算法的有效性。
在传统无线局域网中,终端往往优先选择信号强的接入点。诸如会议室、商场、机场等存在大量终端的公共场所,极有可能造成部分接入点负载过重。基于软件定义无线网络(software defined wireless network,SDWN),综合考虑终端占用带宽、当...
详细信息
在传统无线局域网中,终端往往优先选择信号强的接入点。诸如会议室、商场、机场等存在大量终端的公共场所,极有可能造成部分接入点负载过重。基于软件定义无线网络(software defined wireless network,SDWN),综合考虑终端占用带宽、当前接入点负载和当前终端接收信号强度指示等影响因素,提出周期性地检查各接入点的负载状态,将超载接入点下的候选终端重关联至轻载接入点,从而使整个控制器下所有接入点都达到均衡状态。实验结果表明,随着负载平衡因子持续降低,软件定义无线网络中不同接入点的负载逐渐趋于均衡,从而提高了系统平均吞吐率。仿真结果表明,所提负载均衡算法相对于最强信号强度优先和最小负载优先的负载均衡算法,分别提高约8.3%和15.6%。
暂无评论