针对正交时频空间系统在整数多普勒模型中多普勒分辨率较低,不适用于实际通信场景的问题,在多输入多输出的正交时频空间(multiple⁃input multiple⁃output orthogonal time frequency space,MIMO⁃OTFS)调制系统中考虑分数多普勒信道模型...
详细信息
针对正交时频空间系统在整数多普勒模型中多普勒分辨率较低,不适用于实际通信场景的问题,在多输入多输出的正交时频空间(multiple⁃input multiple⁃output orthogonal time frequency space,MIMO⁃OTFS)调制系统中考虑分数多普勒信道模型,可有效提升多普勒频移分辨率,但同时会产生虚拟路径,导致多普勒间干扰。因此研究了一种模型驱动的学习去噪近似消息传递(learned denoising⁃based approximate message passing,LDAMP)算法,对含有多普勒间干扰的分数多普勒信道进行估计。该算法以去噪近似消息传递(denoising⁃based approximate message passing,DAMP)算法为基础,构建了一个可解释的神经网络框架,并选用去噪卷积神经网络(denoising convolutional neural network,DnCNN)替代DAMP中的传统去噪器,通过学习噪声特征将之有效去除,进而显著提升后续信号处理性能。仿真结果表明,模型驱动的LDAMP算法结合了迭代算法的模型优势和深度学习强大的泛化能力,相较于传统算法,能够有效补偿多普勒间干扰带来的性能损失,实现更高的信道估计精度。
近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.
暂无评论