针对深度学习中对任意形状文本检测准确率不高的问题,提出了一种结合特征金字塔网络(feature pyramid network,FPN)和内核尺度扩展算法的文本检测网络模型。特征金字塔网络能够提取卷积层中更加鲁棒的特征,融合后生成不同尺度的特征内核;内核尺度扩展算法将生成的最小特征内核逐渐扩展为包围完整文本实例的特征图。同时为了针对自然场景中难以检测的文本实例,在训练阶段加入了在线难例挖掘(online hard example mining,OHEM)的方法,并以迁移学习的方式采用2种不同训练策略进行训练。仿真结果表明,该算法模型在不同数据集上具有良好的检测性能。
在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位...
详细信息
在室内指纹定位中,室内环境会影响以接收信号强度指标(Received Signal Strength Indicator,RSSI)或信道状态信息(Channel State Information,CSI)的指纹数据,使得采集指纹数据构建的数据库具有不稳定性和不可靠性的特点,从而影响定位准确率和精度。基于此,本文提出了时间反演(Time Reversal,TR)联合到达时间(Time Of Arrival,TOA)测距的指纹定位技术。首先在定位区域建立坐标系,离线阶段采集两个已知参考点至网格点的距离作为指纹构建数据库,以坐标距离作为指纹可以忽略环境对指纹数据的影响,进而提高定位准确率;其次,在线阶段通过TR技术的空时聚焦性联合TOA,测出距离作为新指纹,与距离指纹进行对比匹配,根据相似度得出目标点的位置坐标。最后通过仿真结果得出:本方案实现了6 m的室内定位,并且定位误差在0.44 m以内,对比传统指纹定位,减小了指纹数据复杂度,提高了系统的鲁棒性和定位精度。
暂无评论