针对深度学习中对任意形状文本检测准确率不高的问题,提出了一种结合特征金字塔网络(feature pyramid network,FPN)和内核尺度扩展算法的文本检测网络模型。特征金字塔网络能够提取卷积层中更加鲁棒的特征,融合后生成不同尺度的特征内核;内核尺度扩展算法将生成的最小特征内核逐渐扩展为包围完整文本实例的特征图。同时为了针对自然场景中难以检测的文本实例,在训练阶段加入了在线难例挖掘(online hard example mining,OHEM)的方法,并以迁移学习的方式采用2种不同训练策略进行训练。仿真结果表明,该算法模型在不同数据集上具有良好的检测性能。
在网络功能虚拟化(Network Function Virtualization,NFV)环境下,保证用户服务功能链(Service Function Chain,SFC)服务质量的同时节约资源消耗,降低运营成本,对运营商来说至关重要。联合考虑SFC部署和无线接入网资源分配,提出一种基于...
详细信息
在网络功能虚拟化(Network Function Virtualization,NFV)环境下,保证用户服务功能链(Service Function Chain,SFC)服务质量的同时节约资源消耗,降低运营成本,对运营商来说至关重要。联合考虑SFC部署和无线接入网资源分配,提出一种基于深度强化学习的SFC多维资源联合分配算法。构建一种基于环境感知的SFC资源分配机制,建立用户时延要求、无线速率需求以及资源容量等约束下的SFC部署成本最小化模型。考虑到无线环境的动态变化,将此优化问题转化为一个无模型离散时间马尔科夫决策过程(Markov Decision Process,MDP)模型。由于该MDP状态空间的连续性和动作空间的高维性,采用深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)强化学习算法进行求解,得到最小化部署成本的资源分配策略。仿真结果表明,该算法可在满足性能需求及资源容量等约束的同时,有效降低SFC部署成本和端到端传输时延。
暂无评论