针对低轨卫星星地通信高动态信道特点,采用正交时频空(Orthogonal Time Frequency Space, OTFS)调制方式,提出一种低导频开销、高精度的两阶段信道估计方法,实现对时延、多普勒频移和信道增益3个参数的精细估计。所提TP-CSIE(Two Phase ...
详细信息
针对低轨卫星星地通信高动态信道特点,采用正交时频空(Orthogonal Time Frequency Space, OTFS)调制方式,提出一种低导频开销、高精度的两阶段信道估计方法,实现对时延、多普勒频移和信道增益3个参数的精细估计。所提TP-CSIE(Two Phase Channel State Information Estimation)方案采用时域训练序列为导频结构,解决时延-多普勒(Delay-Doppler, DD)域嵌入式导频方案在高动态星地链路下导频开销过大的问题。由于DD域信道的固有稀疏性,OTFS信道估计问题被转化为稀疏信号的恢复问题。在算法第一阶段,选用稀疏信号恢复算法进行信道参数的初始估计,利用重叠相加法获得部分先验信息以提高压缩采样匹配追踪(Compressive Sampling Matching Pursuit, CoSAMP)算法的准确性。在算法第二阶段,设计增强型旋转不变子空间算法实现信道参数的准确估计。仿真结果表明,与现有方案相比,所提算法归一化均方误差性能约有7 dB性能的提升,误码率性能约有10 dB的提升。
单发多框检测器算法(Single Shot Multibox Detector,SSD)采用多个特征层进行目标检测,但每一层都是独立使用的,这种结构忽略了上下文信息,不利于提高小目标检测的精度。为了提高传统SSD算法精度,提出了一种特征信息增强的SSD算法(Feature Information Enhancement Based Single Shot Multibox Detector,FESSD),其核心是一个特征信息增强模块。首先提出一个特征融合模块来对不同特征层进行融合和细化。然后采用一种挤压和激励模块(Squeeze and Excitation block)来自适应地获取每个特征通道的重要程度,从而增强有用信息和抑制无用信息。最后仿真结果表明,相比于传统SSD算法,FESSD算法能够有效地提升目标检测的精度。
暂无评论