针对预失真间接学习结构易受加性噪声、模数转换(analog to digital converter,ADC)量化噪声等影响,提出一种通过设置判别门限自适应切换直接学习结构和间接学习结构的组合学习结构数字预失真方案。该方案在直接学习结构中采用最小二乘...
详细信息
针对预失真间接学习结构易受加性噪声、模数转换(analog to digital converter,ADC)量化噪声等影响,提出一种通过设置判别门限自适应切换直接学习结构和间接学习结构的组合学习结构数字预失真方案。该方案在直接学习结构中采用最小二乘法(recursive least square,RLS)算法对参数进行快速粗估计,切换至间接学习结构时采用改进变步长最小均方(least mean square,LMS)算法进一步提取参数。分析仿真表明,组合学习结构的预失真方案其线性化性能较间接学习结构有很大提升,且在算法收敛速度基本持平的情况下有效抑制了间接学习结构中的非相关噪声。
为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 d B以上,低于典型的贝叶斯方法 5 d B以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。
暂无评论