针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全...
详细信息
针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全哈希函数生成256位哈希值作为参与者的匿名身份标识,以此来保护参与者的身份隐私;其次,依据参与者的数据效用值、期望回报及感知任务预算实现面向数据质量的补偿激励,选择性价比最高的胜出者;接着,借助分布式压缩感知理论,对胜出者的原始感知数据压缩处理,得到剔除冗余的观测值,并在观测值中添加哈希函数值等噪扰数据后传送于服务器端聚合,以增强感知数据的隐私性保护,之后对隐私数据集进行完整性校验并重构;最后,利用真实数据集,通过仿真实验对IMPP的有效性进行对比分析.实验结果表明,IMPP机制在隐私保护水平、数据完整性、数据精确性、时间效率、评估准确率、重构匹配度及激励效果等方面是高效的.
针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recog...
详细信息
针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recognition,AHR)两部分组成,解决在固定场景下对传感器的依赖性以及在场景转换时识别模型失效的问题。DPA提出两阶段迁移模式,将行为识别阶段和模型迁移阶段同步推进,保证模型在传感器异动发生后仍能持续拥有识别能力。进一步提出AHR场景迁移方法,实现模型在多场景下的行为识别能力。实验验证该模型具有更优的适应性和可扩展性。
暂无评论