人脑活动是在秒级与毫秒级动态变化的,因此采用静态连接方式构建的功能性脑网络,会造成部分与时间相关有效特征的缺失。该文旨在研究情绪变化期间不同大脑区域之间相互作用的时空变化,提出了一个系统的分析框架。该框架包括相关性度量,脑状态分割,代表性时间片段提取以及动态网络构建和分析。首先,利用皮尔逊相关系数量化不同脑区之间的功能连通性。其次,计算两相邻时间点的相关性矩阵之间的奇异值分解(singular value decomposition, SVD)矢量空间距离,确定情绪转换点并对非平稳脑状态进行时间片分割,提取代表性时间片段。最后,基于相关性和频带功率分布构建不同网络模式,利用滑动窗口法估计动态相关模式和动态功率分布变化,然后提取脑动力学的多变量特征并进行分类识别。在SEED数据集上进行的相关实验验证了基于动态功能连接的情感评估方法的可行性,为不同情绪状态下建立脑动态模型开辟了新的途径。
针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全...
详细信息
针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全哈希函数生成256位哈希值作为参与者的匿名身份标识,以此来保护参与者的身份隐私;其次,依据参与者的数据效用值、期望回报及感知任务预算实现面向数据质量的补偿激励,选择性价比最高的胜出者;接着,借助分布式压缩感知理论,对胜出者的原始感知数据压缩处理,得到剔除冗余的观测值,并在观测值中添加哈希函数值等噪扰数据后传送于服务器端聚合,以增强感知数据的隐私性保护,之后对隐私数据集进行完整性校验并重构;最后,利用真实数据集,通过仿真实验对IMPP的有效性进行对比分析.实验结果表明,IMPP机制在隐私保护水平、数据完整性、数据精确性、时间效率、评估准确率、重构匹配度及激励效果等方面是高效的.
暂无评论