大西洋经向翻转环流(Atlantic meridional overturning circulation,AMOC)作为全球大洋的极向热量输送带,对大西洋附近区域的天气及全球气候变化都存在至关重要的影响。采用自然资源部第一海洋研究所研发的地球系统模式FIO-ESM v2.0(First Institute of Oceanography-earth system model version 2.0)分析了1850~2014年AMOC的空间分布特征及时间变化规律,并进一步讨论造成该变化的可能因素。研究结果表明:1850~2014年AMOC最大值出现在40°N、1000 m深度附近,其时间序列总体呈现-0.0791×10^(6)m^(3)/(s·a)的减弱趋势,该期间伴随着Labrador、Irminger海域冬季混合层深度的变浅。通过将模式计算的AMOC强度与RAPID(rapid climate change programme)和OSNAP(overturning in the subpolar North Atlantic program)观测资料进行对比,结合模式间并行比较结果显示该模式能较好地再现观测数据期间的AMOC变化规律。FIO-ESM v2.0模式模拟的AMOC具有55 a左右的年代际周期,Labrador、Irminger海域冬季混合层深度变化揭示的对流变化以及Labrador、GIN海域表层海水密度变化造成的海水下沉对AMOC强度的周期性振荡贡献较明显,其周期性变化与海表盐度(sea surface salinity,SSS)、海表温度(sea surface temperature,SST)、蒸发与降水的差值、北大西洋涛动(North Atlantic oscillation,NAO)等要素的变化密切相关。
首先回顾了基于海底缆线的海峡水通量观测理论方法的发展历程,对基于电压测量的水通量反演方法进行了梳理,重点阐述了其中的关键观测要素和主要误差来源。为了提升系统可靠性、摒弃外界因素干扰,提出了一种基于感应电流测量的观测方法。对比传统方法,分析了本方法的优缺点,评估了基于本方法的海洋观测系统建设需求和可能性。最后应用本系统建立的一个理想海域——青岛胶州湾湾口各类海洋要素的典型取值范围,通过合理的特征尺度估算和量纲分析,估计了基于电流测量的观测系统中的各类设备的参数要求,其中关键测量器材——电流表至少应满足观测量程覆盖10^(–1)~10~1 m A,观测精度大于1μA,取样频率大于1/60 Hz。在电学测量仪器中,适应本系统要求的器材较普遍,可选择的测量仪器种类较丰富。
2011-03-11日本福岛核电站放射性物质发生泄漏事件,本研究基于MASNUM(Laboratory of Marine Science and Numerical Modeling)海洋环流模式,建立了西北太平洋海洋放射性物质输运扩散模式,对事故释放的^(137)Cs在海洋中的输运和扩散过程...
详细信息
2011-03-11日本福岛核电站放射性物质发生泄漏事件,本研究基于MASNUM(Laboratory of Marine Science and Numerical Modeling)海洋环流模式,建立了西北太平洋海洋放射性物质输运扩散模式,对事故释放的^(137)Cs在海洋中的输运和扩散过程进行了20a的模拟与预测。根据与观测资料的比较,验证了所建立的模式具备模拟放射性物质在海洋中的输运扩散过程的能力。结果显示:至2015年,^(137)Cs表层活度浓度已经扩散至整个中国海域,活度浓度值在0.01Bq/m^3左右;事故发生10a后,研究海域^(137)Cs表层活度浓度趋于均匀,为0.20~0.60Bq/m^3左右;20a后,^(137)Cs在海洋表层的活度浓度要小于0.15Bq/m^3。垂向扩散的结果显示:事故发生10a后,黄海海域^(137)Cs垂向分布较为均匀,东海东部陆架海域活度浓度高于西部海域,且上层海水中^(137)Cs活度浓度高于底层海水,南海北部海域^(137)Cs活度浓度高于南部海域,且略小于黄海和东海;至2030年,中国近海^(137)Cs的活度浓度的垂向分布趋于均匀,南海略高于黄海和东海;日本海^(137)Cs活度浓度主要集中在表层,最大活度浓度出现在2016年,约为0.20Bq/m^3;西北太平洋海域^(137)Cs活度浓度要高于其他4个海域;2030年以后,整个海域^(137)Cs活度浓度在水平和垂向分布均趋于均匀,均小于0.15Bq/m^3。
暂无评论