由于湍流混合直接观测技术难度大、成本高,很大程度限制湍流混合的研究,所以基于温、盐、流资料估算海洋湍流混合的方法应运而生。本文应用在吕宋海峡观测到的23个自由下降微结构湍流剖面仪观测数据和水文观测数据,首次对目前常用的Gregg-Henyey-Polzin(GHP)细尺度参数化、Mackinnon and Gregg(MG)参数化和Thorpe尺度方法进行比较研究,评估它们的适用性。发现GHP参数化方法能够很好地估算吕宋海峡的湍流混合。虽然GHP参数化方法估算的耗散率总体上要偏弱于观测的结果,但估算和观测的差异在2倍以内的结果占71%,与微结构湍流剖面仪观测到的耗散率在水平分布和垂向分布上呈现出相同的分布特征。基于MG参数化方法发现估算的吕宋海峡西侧1200m以浅的耗散率比观测值大,但总体上呈现出相同的分布特征。另外,MG参数化估算与观测差异在2倍以内的结果占58%。表明相比于GHP参数化方法,MG参数化方法的估算值更偏离观测值。Thorpe尺度方法在估算吕宋海峡的耗散率时,估算和观测的差异在2倍以内的结果仅有30%,70%的估算结果与观测结果相差高出1个量级,空间分布上与观测结果差异较大。对比吕宋海峡湍流混合参数化方法的结果表明GHP参数化方法最优,MG参数化方法其次,Thorpe尺度方法相对GHP和MG参数化方法较差。
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨...
详细信息
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=1012W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。
暂无评论