目的:探讨随机化检验(Randomization test)在内部预试验IPS(Internal Pilot Study)自适应设计样本量调整中对I型错误和检验效能的影响.方法:利用蒙特-卡罗(MonteCarlo)法模拟样本量较小时的IPS样本量调整,分别采用随机化检验和t检验分...
详细信息
目的:探讨随机化检验(Randomization test)在内部预试验IPS(Internal Pilot Study)自适应设计样本量调整中对I型错误和检验效能的影响.方法:利用蒙特-卡罗(MonteCarlo)法模拟样本量较小时的IPS样本量调整,分别采用随机化检验和t检验分析最后数据并比较二者对I型错误、检验效能值的影响.结果:重计算的第二阶段样本量波动性较大,t检验不能很好地抑制I型错误,随机化检验能较好的抑制I型错误,检验效能略有降低.结论:在临床试验样本量较小的情况下,内部预试验盲态下样本量调整后随机化检验能保护I型错误不增大,同时保证检验效能亦满足要求.
人工智能(artificial intelligence,AI)的提出引发了医学领域的诸多技术创新,并彻底改变了传统医学模式。医学人工智能主要包括机器学习(machine learning,ML)、深度学习(deep learning,DL)、专家系统(expert systems,ES)、智能机器人(intelligent robots,IR)及医疗物联网(internet of medical things,IoMT)等常用和新兴AI技术方法。AI在医学领域的应用主要体现于智能筛查、智能诊断、风险预测和辅助治疗等方面。当前医学AI已经取得了重大突破,大数据质量治理、新技术赋能革新、多领域知识整合和个性化医疗决策等在临床领域中将展示出更为广阔的发展前景。
暂无评论