大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和...
详细信息
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.
道路信息与当前道路的流量模式息息相关,丰富的POI(Point of Interest)语义可以揭示一个地区的属性,人口数据可以揭示一个地区的人口流量趋势。在时空预测中考虑以上外部空间特征对流量带来的影响,可以帮助模型完成更精准的预测。现有...
详细信息
道路信息与当前道路的流量模式息息相关,丰富的POI(Point of Interest)语义可以揭示一个地区的属性,人口数据可以揭示一个地区的人口流量趋势。在时空预测中考虑以上外部空间特征对流量带来的影响,可以帮助模型完成更精准的预测。现有的外部空间建模方法通常针对输入的外部空间特征,经过神经网络映射学得空间相关语义表示,再与最终的时空流量表示融合。然而,由于流量表示和空间特征之间具有异构性,已有的外部空间特征建模方法往往扩展性不高,只能针对特定外部空间特征或特定时空模型。为解决以上问题,提出了一种针对外部空间特征的通用建模框架SCFNet(Spatial Context Fusion Network for Traffic Forecasting)。具体而言,引入基于信息交互的注意力机制,在时空表示和外部空间特征之间计算注意力分数,从而实现外部空间特征和时空表示的高效融合;同时,设计了一种时间向量动态编码方式,以生成动态的空间特征语义。SCFNet采用模块化设计,能够与各类最新的时空流量预测网络结合。SCFNet支持区域人口数据、道路信息、POI等不同空间静态特征的混合输入。在3个真实交通数据集上进行了实验,实验结果表明,SCFNet可显著提高各类最新时空预测方法(如MTGNN,ASTGCN,GraphWaveNet)的预测精度。
暂无评论