咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 4 篇 信息与通信工程
    • 3 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 2 篇 生物工程
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 6 篇 理学
    • 3 篇 数学
    • 2 篇 物理学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 2 篇 signal processin...
  • 1 篇 complex networks
  • 1 篇 proxy
  • 1 篇 evolutionary cry...
  • 1 篇 ldanet
  • 1 篇 representation l...
  • 1 篇 deep learning
  • 1 篇 pcanet
  • 1 篇 controlled quant...
  • 1 篇 three-dimensiona...
  • 1 篇 shared
  • 1 篇 fault tolerance
  • 1 篇 image segmentati...
  • 1 篇 protocol
  • 1 篇 no-wait flow sho...
  • 1 篇 self-supervised ...
  • 1 篇 speech processin...
  • 1 篇 tensor object cl...
  • 1 篇 infinitely and f...
  • 1 篇 acoustics

机构

  • 2 篇 key laboratory o...
  • 2 篇 1. school of com...
  • 2 篇 centre de recher...
  • 2 篇 list key laborat...
  • 1 篇 2. state key lab...
  • 1 篇 lab of image sci...
  • 1 篇 universit de ren...
  • 1 篇 inserm u1099 ren...
  • 1 篇 jiangsu province...
  • 1 篇 1. key laborator...
  • 1 篇 key laboratory o...
  • 1 篇 jiangsu provinca...
  • 1 篇 dept. of radiolo...
  • 1 篇 school of comput...
  • 1 篇 institute for qu...
  • 1 篇 université de re...
  • 1 篇 southeast univer...
  • 1 篇 1. key lab of sp...
  • 1 篇 4. state key lab...
  • 1 篇 université de re...

作者

  • 4 篇 shu huazhong
  • 3 篇 senhadji lotfi
  • 3 篇 kong youyong
  • 3 篇 wu jiasong
  • 1 篇 lijun tang
  • 1 篇 3 key laboratory...
  • 1 篇 zhihao liu
  • 1 篇 jifeng zhong
  • 1 篇 key lab of compu...
  • 1 篇 zeng rui
  • 1 篇 zhang ke
  • 1 篇 3 department of ...
  • 1 篇 ke zhang
  • 1 篇 jean louis coatr...
  • 1 篇 liu xilin
  • 1 篇 juan xu
  • 1 篇 guanyu yang
  • 1 篇 yang yuguang1 3 ...
  • 1 篇 z. sun
  • 1 篇 zhang yan

语言

  • 12 篇 英文
  • 1 篇 其他
检索条件"机构=1. Key Laboratory of Computer Network and Information Integration"
13 条 记 录,以下是1-10 订阅
排序:
Graph Contrastive Learning with Learnable Graph Augmentation  48
Graph Contrastive Learning with Learnable Graph Augmentation
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Pu, Xinyan Zhang, Ke Shu, Huazhong Coatrieux, Jean Louis Kong, Youyong Southeast University Ministry of Education Key Laboratory of Computer Network and Information Integration Nanjing China Southeast University Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Nanjing China Universit de Rennes 1 Ltsi Rennes France Centre de Recherche en Information BioMdicale Sino-Franais Rennes France
Graph contrastive learning has gained popularity due to its success in self-supervised graph representation learning. Augmented views in contrastive learning greatly determine the quality of the learned representation... 详细信息
来源: 评论
Graph Contrastive Learning with Learnable Graph Augmentation
Graph Contrastive Learning with Learnable Graph Augmentation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xinyan Pu Ke Zhang Huazhong Shu Jean Louis Coatrieux Youyong Kong Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Southeast University Nanjing China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing China LTSI Universit de Rennes 1 Rennes France Centre de Recherche en Information BioMdicale Sino-Franais Rennes France
Graph contrastive learning has gained popularity due to its success in self-supervised graph representation learning. Augmented views in contrastive learning greatly determine the quality of the learned representation... 详细信息
来源: 评论
TSUnet-CC: Temporal Spectrogram Unet embedding Cross Channel-wise attention mechanism for MDD identification
TSUnet-CC: Temporal Spectrogram Unet embedding Cross Channel...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: C. Yang Z. Sun F. Zhang H. Shu J. Li W. Xiang Key Laboratory of Computer Network and Information Integration of Ministry of Education Southeast University China Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing Southeast University China Centre de Recherche en Information Biomédicale Sino-français Southeast University China Université de Rennes 1 France Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
Automatic detection of major depressive disorder (MDD) with multiple-channel electroencephalography (EEG) signals is of great significance for treatment of the mental diseases. In a U-net network, clear EEG signals ar...
来源: 评论
Analysis and Improvement of an Efficient Controlled Quantum Secure Direct Communication and Authentication Protocol
收藏 引用
computers, Materials & Continua 2018年 第12期57卷 621-633页
作者: Jifeng Zhong Zhihao Liu Juan Xu Navigation College Jimei UniversityXiamen361021China School of Computer Science and Engineering Southeast UniversityNanjing211189China Key Laboratory of Computer Network and Information Integration Southeast UniversityMinistry of EducationNanjing211189China Institute for Quantum Computing University of WaterlooWaterlooONCanadaN2L3G1
The controlled quantum secure direct communication(CQSDC)with authentication protocol based on four particle cluster states via quantum one-time pad and local unitary operations is *** is found that there are some ser... 详细信息
来源: 评论
Deep octonion networks
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Jiasong Xu, Ling Kong, Youyong Senhadji, Lotfi Shu, Huazhong Laboratory of Image Science and Technology Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing210096 China INSERM U1099 RennesF-35000 France Université de Rennes 1 LTSI RennesF-35042 France
Deep learning is a research hot topic in the field of machine learning. Real-value neural networks (Real NNs), especially deep real networks (DRNs), have been widely used in many research fields. In recent years, the ... 详细信息
来源: 评论
Fractional spectral graph wavelets and their applications
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Jiasong Wu, Fuzhi Yang, Qihan Kong, Youyong Liu, Xilin Zhang, Yan Senhadji, Lotfi Shu, Huazhong LIST Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing210096 China International Joint Research Laboratory of Information Display and Visualization Southeast University Ministry of Education Nanjing210096 China INSERM U 1099 Université de Rennes 1 LTSI Rennes35000 France Centre de Recherche en Information Biomédicale Sino-francais Nanjing210096 China College of Data Science Taiyuan University of Technology Taiyuan030024 China
One of the key challenges in the area of signal processing on graphs is to design transforms and dictionaries methods to identify and exploit structure in signals on weighted graphs. In this paper, we first generalize... 详细信息
来源: 评论
Tensor object classification via multilinear discriminant analysis network  40
Tensor object classification via multilinear discriminant an...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 201.
作者: Zeng, Rui Wu, Jiasong Senhadji, Lotfi Shu, Huazhong LIST Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing China INSERM U 1099 Rennes France Laboratoire Traitement du Signal et de l'Image Universit de Rennes 1 Rennes France France
This paper proposes an multilinear discriminant analysis network (MLDANet) for the recognition of multidimensional objects, knows as tensor objects. The MLDANet is a variation of linear discriminant analysis network (... 详细信息
来源: 评论
Quantitative Measurement of Coronary Artery Stenosis in CCTA Images Using a 2D Parametric Intensity Model
Quantitative Measurement of Coronary Artery Stenosis in CCTA...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: Guanyu YANG Xinglou ZHAO Lijun TANG Huzhong SHU Christine TOUMOULIN Lab of Image Science and Technology Key Laboratory of Computer Network and Information Integration (Southeast University) Dept. of Radiology the First Affiliated Hospital of Nanjing Medical University INSERM-U1099 LTSI Universite de Rennes 1
In this paper, we propose an approach based on 2D vessel model to segment the vessel lumen in three-dimensional coronary computed tomographic angiography (CCTA) images. The 2D parametric intensity model is introduced ... 详细信息
来源: 评论
Evolutionary cryptography theory based generating method for a secure Koblitz elliptic curve and its improvement by a hidden Markov models
收藏 引用
Science China(information Sciences) 2012年 第4期55卷 911-920页
作者: WANG Chao 1.ZHANG HuanGuo 2,3 & LIU LiLi 4 1.key Lab of Specialty Fiber Optics and Optical Access {1.,Ministry of Education,Shanghai University,Shanghai 200072,China 2 computer School of Wuhan University,Wuhan 430072,China 3 key laboratory of Aerospace information Security and Trusted Computing Ministry of Education,Wuhan 430072,China 4 Huawei Technologies CO.LTD.,Shanghai 201.06,China 1. Key Lab of Specialty Fiber Optics and Optical Access Network Ministry of Education Shanghai University Shanghai 200072 China2. Computer School of Wuhan University Wuhan 430072 China3. Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education Wuhan 430072 China4. Huawei Technologies CO. LTD. Shanghai 201206 China
Considering potential attacks from cloud-computing and quantum-computing,it is becoming nec-essary to provide higher security elliptic *** hidden Markov models are introduced for designing the trace-vector computation... 详细信息
来源: 评论
Restrictive mechanism of flow control among non-cooperative Internet users
收藏 引用
Science China(information Sciences) 2011年 第1期54卷 12-22页
作者: TAO Jun1.2,ZHONG Xiao1.2 & LU YiFei1.2 1.0} {1. of computer network and information integration,Southeast University, Ministry of Education,Nanjing 21.096,China 2School of computer Science and Engineering,Southeast University,Nanjing 21.096,China 1. Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing 210096 China2. School of Computer Science and Engineering Southeast University Nanjing 210096 China
The flow and congestion control methods based on one-shot game model with non-cooperative game theory can explain the non-cooperative behavior of Internet ***,the low effciency of equilibrium solutions affects their *... 详细信息
来源: 评论