咨询与建议

限定检索结果

文献类型

  • 257 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 412 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 272 篇 工学
    • 125 篇 信息与通信工程
    • 125 篇 计算机科学与技术...
    • 109 篇 软件工程
    • 44 篇 控制科学与工程
    • 43 篇 仪器科学与技术
    • 38 篇 光学工程
    • 32 篇 生物工程
    • 28 篇 电子科学与技术(可...
    • 27 篇 环境科学与工程(可...
    • 25 篇 测绘科学与技术
    • 16 篇 机械工程
    • 15 篇 电气工程
    • 15 篇 航空宇航科学与技...
    • 11 篇 土木工程
    • 10 篇 建筑学
    • 8 篇 材料科学与工程(可...
    • 8 篇 网络空间安全
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 化学工程与技术
  • 140 篇 理学
    • 78 篇 数学
    • 42 篇 物理学
    • 35 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 13 篇 化学
    • 6 篇 地球物理学
    • 5 篇 系统科学
  • 34 篇 管理学
    • 17 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
  • 22 篇 农学
    • 22 篇 农业资源与环境
  • 3 篇 医学
  • 2 篇 经济学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 39 篇 synthetic apertu...
  • 22 篇 image coding
  • 21 篇 feature extracti...
  • 21 篇 training
  • 18 篇 radar polarimetr...
  • 18 篇 remote sensing
  • 15 篇 encoding
  • 14 篇 image reconstruc...
  • 13 篇 visualization
  • 12 篇 deep neural netw...
  • 12 篇 three-dimensiona...
  • 12 篇 semantics
  • 12 篇 radar imaging
  • 12 篇 satellites
  • 11 篇 video coding
  • 11 篇 decoding
  • 10 篇 object detection
  • 10 篇 image segmentati...
  • 10 篇 distortion
  • 10 篇 image compressio...

机构

  • 139 篇 cas key laborato...
  • 55 篇 key laboratory o...
  • 49 篇 aerospace inform...
  • 46 篇 school of electr...
  • 34 篇 key laboratory o...
  • 30 篇 institute of ele...
  • 29 篇 university of ch...
  • 23 篇 key laboratory o...
  • 15 篇 department of au...
  • 13 篇 the cas key labo...
  • 12 篇 suzhou aerospace...
  • 12 篇 key laboratory o...
  • 9 篇 microsoft resear...
  • 8 篇 graduate univers...
  • 8 篇 cas key laborato...
  • 7 篇 the cas key labo...
  • 6 篇 university of sc...
  • 6 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 the key laborato...

作者

  • 44 篇 chen zhibo
  • 31 篇 li houqiang
  • 26 篇 qiu xiaolan
  • 26 篇 dong liu
  • 25 篇 liu dong
  • 23 篇 zhibo chen
  • 23 篇 houqiang li
  • 22 篇 li li
  • 21 篇 xiaolan qiu
  • 18 篇 zhou wei
  • 17 篇 zhou wengang
  • 17 篇 zhang zhe
  • 17 篇 feng wu
  • 15 篇 li xin
  • 15 篇 zhang bingchen
  • 15 篇 wu yirong
  • 14 篇 ding chibiao
  • 13 篇 bin lei
  • 12 篇 chibiao ding
  • 12 篇 zongxu pan

语言

  • 396 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=1. Key Laboratory of Technology in Geo-spatial Information Processing and Application System"
412 条 记 录,以下是151-160 订阅
排序:
LIRA: Lifelong image restoration from unknown blended distortions
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianzhao Lin, Jianxin Li, Xin Zhou, Wei Liu, Sen Chen, Zhibo CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei230027 China
Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise t... 详细信息
来源: 评论
TomoSAR-ALISTA: Efficient TomoSAR Imaging via Deep Unfolded Network
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Muhan Zhang, Zhe Wang, Yue Gao, Silin Qiu, Xiaolan Key Laboratory of Technology in Geo-spatial Information Processing and Application System Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Aerospace Big Data Application Technology Suzhou215123 China Suzhou Aerospace Information Research Institute Suzhou215123 China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing100049 China Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China Electrical and Computer Engineering Department George Mason University FairfaxVA22030 United States
Synthetic aperture radar (SAR) tomography (TomoSAR) has attracted remarkable interest for its ability in achieving three-dimensional reconstruction along the elevation direction from multiple observations. In recent y... 详细信息
来源: 评论
A decomposed dual-cross generative adversarial network for image rain removal  29
A decomposed dual-cross generative adversarial network for i...
收藏 引用
29th British Machine Vision Conference, BMVC 201.
作者: Jin, Xin Chen, Zhibo Lin, Jianxin Chen, Jiale Zhou, Wei Shan, Chaowei CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei230027 China
Rain removal is important for many computer vision applications, such as surveillance, autonomous car, etc. Traditionally, rain removal is regarded as a signal removal problem which usually causes over-smoothing by re... 详细信息
来源: 评论
THE REMOTE SENSING IMAGE geoMETRICAL MODEL of BP NEURAL NETWORK
THE REMOTE SENSING IMAGE GEOMETRICAL MODEL of BP NEURAL NETW...
收藏 引用
2020 International Conference on geomatics in the Big Data Era, ICGBD 2020
作者: Yue, C.Y. Sun, T. Xie, J.F. Beijing Institute of Space Mechanics and Electricity Beijing China Beijing Key Laboratory of Advanced Optical Remote Sensing Technology Beijing China Key Laboratory of Technology in Geo-spatial Information Processing and Application System Aerospace Information Research Institute Chinese Academy of Sciences Beijing China Land Satellite Remote Sensing Application Center Ministry of Natural Resources of P. R. China Beijing China
Imagery geometry models (IGMs) of the high-resolution satellite images (HRSIs) are always of great interest in the photogrammetry and remote sensing community for the raising new kinds of sensors and imaging {1.s. ... 详细信息
来源: 评论
An Approach for Spaceborne InSAR DEM Inversion Integrated with Stereo-SAR Method  6
An Approach for Spaceborne InSAR DEM Inversion Integrated wi...
收藏 引用
6th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 201.
作者: Li, Fangfang Zhang, Yueting Qiu, Xiaolan Key Laboratory of Geo-spatial Information Processing and Application System Technology Aerospace Information Research Institute Chinese Academy of Sciences Beijing China
Spaceborne Interferometric Synthetic Aperture Radar (InSAR) has the capability of high precise topographic mapping for large area. However, on the one hand, digital elevation models (DEM) inversion needs at least one ... 详细信息
来源: 评论
Automatic Extraction of Supraglacial Lake using SAR Imagery and Deep Learning
Automatic Extraction of Supraglacial Lake using SAR Imagery ...
收藏 引用
IEEE International Conference on Radar
作者: Jiang Di Li Xinwu Gong Chen Hong Wen Wu Yirong Aerospace Information Research Institute Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Key Laboratory of Technology in Geo-spatial Information Processing and Application System Chinese Academy of Sciences Beijing China Key Laboratory of Digital Earth Science Aerospace Information Research Institute Chinese Academy of Sciences Beijing China
Supraglacial lake plays an important role in ice sheet dynamics, mass balance and sea level rise. Therefore, it is of great importance to extract supraglacial lake and obtain its spatial-temporal distribution or chang... 详细信息
来源: 评论
A Pylon Detection Method Based on Faster R-CNN in High-Resolution SAR Images
A Pylon Detection Method Based on Faster R-CNN in High-Resol...
收藏 引用
Asian and Pacific Conference on Synthetic Aperture Radar (APSAR)
作者: Lv Xiaoling Jiankun Chen Xiaolan Qiu Chinese Academy of Sciences School of Electronic Electrical and Communication Engineering Aerospace Information Research Institute University of Chinese Academy of Sciences Beijing China Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Aerospace Information Research Institute Chinese Academy of Sciences Beijing China
SyntheticAperture Radar (SAR) is an active microwave imaging system, which can provide all-time and allweather imaging with a wide observation range. In sub-meter high-resolution SAR images, man-made metallic targets,... 详细信息
来源: 评论
Electromagnetic Simulation Aided SAR Target Classification Via Deep Domain Adaptation
Electromagnetic Simulation Aided SAR Target Classification V...
收藏 引用
IEEE International Conference on Radar
作者: Xiaoling Lv Xiaolan Qiu Wenming Yu Aerospace Information Research Institute Chinese Academy of Sciences School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Suzhou Aerospace Information Research Institute Suzhou China State key Laboratory of Millimeter Waves Southeast University Nanjing China
Convolutional neural networks (CNNs) have made tremendous success in optical images classification recently. However, in synthetic aperture radar (SAR) target classification, it is difficult to annotate a large amount... 详细信息
来源: 评论
A Hybrid and Explainable Deep Learning Framework for SAR Images
A Hybrid and Explainable Deep Learning Framework for SAR Ima...
收藏 引用
IEEE International Symposium on geoscience and Remote Sensing (IGARSS)
作者: Zhongling Huang Mihai Datcu Zongxu Pan Bin Lei Key Laboratory of Technology in Geo-spatial Information Processing and Application System CAS Remote Sensing Technology Institute (IMF) German Aerospace Center (DLR)
Deep learning based patch-wise Synthetic Aperture Radar (SAR) image classification usually requires a large number of labeled data for training. Aiming at understanding SAR images with very limited annotation and taki... 详细信息
来源: 评论
Multi-aspect Tomographic SAR Imaging Approach via Distributed Compressed Sensing and Joint Sparsity
Multi-aspect Tomographic SAR Imaging Approach via Distribute...
收藏 引用
IEEE International Conference on Radar
作者: Bang Du Zhe Zhang Xiaolan Qiu Bin Lei Chibiao Ding Key Laboratory of Technology in Geo-spatial Information Processing and Application System Aerospace Information Research Institute (of Chinese Academy of Sciences) University of Chinese Academy of Sciences Beijing China Aerospace Information Research Institute Chinese Academy of Sciences Suzhou China Aerospace Information Research Institute (of Chinese Academy of Sciences) Beijing China
Synthetic aperture radar (SAR) tomography (TomoSAR) is a novel technique that enables three-dimensional (3-D) imaging and plays an important role in urban remote sensing by utilizing multiple observations of the same ... 详细信息
来源: 评论