针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。
针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle...
详细信息
针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle swarm optimization,DCPSO)算法,对DBSCAN算法的邻域半径参数进行寻优,将得到的最优参数作为DBSCAN算法的参数输入,然后计算聚类中心,完成混合矩阵估计。针对基于距离排序的源信号数目估计算法存在依靠经验参数的选取且不具备噪声点剔除能力的问题,提出了最大距离排序算法。实验结果表明,所提算法较相应的对比算法皆有提升,源信号数目估计准确率较原算法提高近40%,混合矩阵估计的误差较对比算法提升3 dB以上,且所提算法在收敛速度上优于原算法。
暂无评论