Smartphones became everyday “companions” of humans. Almost everyone has a smartphone in their pocket, or bag, and use it on daily basis. Modern smartphones are “loaded” with sensors, providing streams of, potentia...
Smartphones became everyday “companions” of humans. Almost everyone has a smartphone in their pocket, or bag, and use it on daily basis. Modern smartphones are “loaded” with sensors, providing streams of, potentially useful, data. Simultaneously, staying fit, exercising, running, swimming, etc. became fashionable. In this “climate”, employers can try to incentivise their workers, for instance, to use bicycles to come to work. Here, one of interesting questions becomes: are workers actually using bicycles, as declared, or do they try to subvert the system and win prizes, while, for instance, using public transport. One of the ways to check this could be to use data from smartphone sensors to determine the mode of transportation that has been *** paper presents preliminary results of an attempt at using raw sensor data and deep learning techniques for transportation mode detection, in real-time, directly on smartphone. The work tries to balance sensor power consumption and computational requirements with prediction correctness and response time. In this context, results of application of recurrent neural networks, as well as more traditional approaches, to a set of actual mobility data, are presented. Furthermore, approaches that leverage domain knowledge, in order to make classifiers more reliable and requiring less processing power (and less energy), are considered.
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, mes...
详细信息
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Steven...
详细信息
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus A. Kapoor, D. Lee, A. Chakravarti O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells C. Maercker, F. Graf, M. Boutros O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis O7 Role of microRNA in LCL to IPSC reprogramming S. Kumar, J. Curran, J. Blangero O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti O9 Metabolomic profiling for the diagnosis of neurometabolic disorders T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea O10 A novel causal methylation network approach to Alzheimer’s
暂无评论