咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 70 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 理学
    • 36 篇 物理学
    • 25 篇 数学
    • 16 篇 化学
    • 16 篇 地球物理学
    • 9 篇 统计学(可授理学、...
    • 7 篇 生物学
    • 6 篇 天文学
    • 3 篇 地质学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 51 篇 工学
    • 14 篇 动力工程及工程热...
    • 13 篇 计算机科学与技术...
    • 11 篇 化学工程与技术
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 核科学与技术
    • 9 篇 软件工程
    • 7 篇 生物工程
    • 5 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 3 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 航空宇航科学与技...
    • 2 篇 光学工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 冶金工程
  • 4 篇 管理学
    • 3 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 gravitational wa...
  • 3 篇 molecular dynami...
  • 2 篇 magnetic fields
  • 2 篇 wave functions
  • 2 篇 diffusion
  • 2 篇 clustering algor...
  • 2 篇 astrophysical st...
  • 1 篇 boundary integra...
  • 1 篇 boundary
  • 1 篇 semipermeability
  • 1 篇 urban transporta...
  • 1 篇 solid electrolyt...
  • 1 篇 cosmological par...
  • 1 篇 galaxies
  • 1 篇 deep neural netw...
  • 1 篇 method
  • 1 篇 bone
  • 1 篇 dark matter

机构

  • 15 篇 department of ph...
  • 15 篇 department of ph...
  • 14 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 indian institute...
  • 12 篇 department of as...
  • 12 篇 wits centre for ...
  • 12 篇 department of ph...
  • 12 篇 université libre...
  • 12 篇 perimeter instit...
  • 12 篇 waterloo centre ...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 kavli institute ...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...

作者

  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson
  • 11 篇 v. p. mitrofanov
  • 11 篇 f. cipriano

语言

  • 56 篇 英文
  • 14 篇 其他
检索条件"机构=2Program in Applied and Computational Mathematics"
70 条 记 录,以下是1-10 订阅
Particle swarm optimization with local search for height-map surface reconstruction from point clouds in reverse engineering
收藏 引用
Neural Computing and Applications 2024年 1-20页
作者: Gálvez, Akemi Fister, Iztok Deb, Suash Fister, Iztok Iglesias, Andrés Dept. of Applied Mathematics and Computational Sciences E.T.S.I. Caminos Canales y Puertos University of Cantabria Avda. de los Castros s/n Santander39005 Spain Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi274-8510 Japan Faculty of Electrical Engineering and Computer Science University of Maribor Koroska cesta 34 Maribor2000 Slovenia IT & Educational Consultant Ranchi India Distinguished Professorial Associate Decision Sciences and Modeling Program Victoria University Melbourne Australia
Surface reconstruction is a classical process in industrial engineering and manufacturing, particularly in reverse engineering, where the goal is to obtain a digital model from a physical object. For that purpose, the... 详细信息
来源: 评论
Algebraic Constraints and Algorithms for Common Lines in Cryo-EM
arXiv
收藏 引用
arXiv 2024年
作者: Muller, Tommi Duncan, Adriana L. Verbeke, Eric J. Kileel, Joe Mathematical Institute University of Oxford OxfordOX2 6GG United Kingdom Department of Mathematics University of Texas at Austin AustinTX78712 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Oden Institute University of Texas at Austin AustinTX78712 United States
We revisit the topic of common lines between projection images in single particle cryo-electron microscopy (cryo-EM). We derive a novel low-rank constraint on a certain 2n × n matrix storing properly-scaled basis... 详细信息
来源: 评论
The phase diagram of a deep potential water model
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Linfeng Wang, Han Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
Using the Deep Potential methodology, we construct a model that reproduces accurately the potential energy surface of the SCAN approximation of density functional theory for water, from low temperature and pressure to... 详细信息
来源: 评论
Physics-informed machine learning of the Lagrangian dynamics of velocity gradient tensor
收藏 引用
Physical Review Fluids 2021年 第9期6卷 094607-094607页
作者: Yifeng Tian Daniel Livescu Michael Chertkov Computational Physics and Methods Group Computer Computational and Statistical Sciences Division (CCS-2) Los Alamos National Laboratory Los Alamos 87545 NM United States Program in Applied Mathematics University of Arizona Tucson 85721 AZ United States
Reduced models describing the Lagrangian dynamics of the velocity gradient tensor (VGT) in homogeneous isotropic turbulence (HIT) are developed under the physics-informed machine learning (PIML) framework. We consider... 详细信息
来源: 评论
Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Dongdong Zhang, Linfeng Wang, Yanze Chang, Junhan Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States DP Technology Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China School of Mathematical Sciences Peking University Beijing China Department of Mathematics Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
Enhanced sampling methods such as metadynamics and umbrella sampling have become essential tools for exploring the configuration space of molecules and materials. At the same time, they have long faced a number of iss... 详细信息
来源: 评论
Sequential Markov Chain Monte Carlo for Lagrangian Data Assimilation with Applications to Unknown Data Locations
arXiv
收藏 引用
arXiv 2023年
作者: Ruzayqat, Hamza Beskos, Alexandros Crisan, Dan Jasra, Ajay Kantas, Nikolas Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Statistical Science University College London LondonWC1E 6BT United Kingdom Department of Mathematics Imperial College London LondonSW7 2AZ United Kingdom
We consider a class of high-dimensional spatial filtering problems, where the spatial locations of observations are unknown and driven by the partially observed hidden signal. This problem is exceptionally challenging... 详细信息
来源: 评论
A deep potential model with long-range electrostatic interactions
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Linfeng Wang, Han Muniz, Maria Carolina Panagiotopoulos, Athanassios Z. Car, Roberto Weinan, E. DP Technology Beijing China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Department of Chemical and Biological Engineering Princeton University PrincetonNJ08544 United States Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make possible molecular simulations with the accuracy of quantum mechanical density functional theory, a... 详细信息
来源: 评论
Unbiased Estimation Using a Class of Diffusion Processes
SSRN
收藏 引用
SSRN 2022年
作者: Ruzayqat, Hamza Beskos, Alexandros Crisan, Dan Jasra, Ajay Kantas, Nikolas Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Statistical Science University College London LondonWC1E 6BT United Kingdom Department of Mathematics Imperial College London LondonSW7 2AZ United Kingdom
We study the problem of unbiased estimation of expectations with respect to (w.r.t.) π a given, general probability measure on (Rd,B(Rd)) that is absolutely continuous with respect to a standard Gaussian measure. We ... 详细信息
来源: 评论
Unbiased Estimation using a Class of Diffusion Processes
arXiv
收藏 引用
arXiv 2022年
作者: Ruzayqat, Hamza Beskos, Alexandros Crisan, Dan Jasra, Ajay Kantas, Nikolas Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 KSA Saudi Arabia Department of Statistical Science University College London LondonWC1E 6BT United Kingdom Department of Mathematics Imperial College London LondonSW7 2AZ United Kingdom
We study the problem of unbiased estimation of expectations with respect to (w.r.t.) π a given, general probability measure on (d, B(d)) that is absolutely continuous with respect to a standard Gaussian measure. We f... 详细信息
来源: 评论
Publisher's Note: “Reacting and non-reacting, three-dimensional shear layers with spanwise stretching” [Phys. Fluids 34, 123602 (2022)]
收藏 引用
Physics of Fluids 2023年 第1期35卷
作者: Jonathan L. Palafoutas William A. Sirignano 1Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08540 USA 2Department of Mechanical and Aerospace Engineering University of California Irvine Irvine California 92697 USA
This article was published online on 2 December 2022 with errors throughout the paper. All the derivative terms had the wrong denominator; the denominators were
来源: 评论