咨询与建议

限定检索结果

文献类型

  • 611 篇 期刊文献
  • 597 篇 会议

馆藏范围

  • 1,208 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 856 篇 工学
    • 683 篇 计算机科学与技术...
    • 599 篇 软件工程
    • 180 篇 信息与通信工程
    • 99 篇 控制科学与工程
    • 88 篇 生物工程
    • 72 篇 生物医学工程(可授...
    • 60 篇 机械工程
    • 55 篇 化学工程与技术
    • 54 篇 电子科学与技术(可...
    • 45 篇 光学工程
    • 45 篇 电气工程
    • 27 篇 仪器科学与技术
    • 23 篇 交通运输工程
    • 22 篇 航空宇航科学与技...
    • 21 篇 土木工程
    • 16 篇 建筑学
    • 14 篇 网络空间安全
  • 476 篇 理学
    • 339 篇 数学
    • 106 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 59 篇 物理学
    • 56 篇 化学
    • 34 篇 系统科学
  • 289 篇 管理学
    • 151 篇 管理科学与工程(可...
    • 144 篇 图书情报与档案管...
    • 44 篇 工商管理
  • 47 篇 医学
    • 39 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 20 篇 农学
  • 17 篇 法学
    • 15 篇 社会学
  • 7 篇 经济学
  • 6 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 66 篇 computer science
  • 57 篇 educational inst...
  • 53 篇 knowledge engine...
  • 53 篇 laboratories
  • 50 篇 educational tech...
  • 41 篇 data mining
  • 27 篇 semantics
  • 27 篇 computer science...
  • 27 篇 ontology
  • 21 篇 image segmentati...
  • 20 篇 feature extracti...
  • 16 篇 deep learning
  • 16 篇 genetic algorith...
  • 15 篇 reinforcement le...
  • 15 篇 artificial intel...
  • 14 篇 ontologies
  • 14 篇 topology
  • 14 篇 clustering algor...
  • 13 篇 support vector m...
  • 12 篇 neural networks

机构

  • 512 篇 college of compu...
  • 272 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 45 篇 college of softw...
  • 41 篇 key laboratory o...
  • 39 篇 school of artifi...
  • 35 篇 key laboratory o...
  • 32 篇 college of compu...
  • 29 篇 key laboratory o...
  • 24 篇 jilin university...
  • 21 篇 school of comput...
  • 20 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 department of co...
  • 17 篇 key laboratory o...
  • 16 篇 jilin university...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 15 篇 key laboratory o...

作者

  • 46 篇 yang bo
  • 36 篇 liang yanchun
  • 35 篇 sun geng
  • 33 篇 ouyang dantong
  • 31 篇 dantong ouyang
  • 30 篇 li xiongfei
  • 28 篇 li ximing
  • 27 篇 liu dayou
  • 27 篇 ouyang jihong
  • 27 篇 zuo wanli
  • 26 篇 yanchun liang
  • 24 篇 bo yang
  • 24 篇 liu yanheng
  • 23 篇 niyato dusit
  • 23 篇 yanheng liu
  • 21 篇 li jiahui
  • 20 篇 guan renchu
  • 20 篇 huang lan
  • 20 篇 da-you liu
  • 19 篇 dayou liu

语言

  • 1,111 篇 英文
  • 50 篇 中文
  • 47 篇 其他
检索条件"机构=A Key Laboratory of Symbolic Computation and Knowledge Engineering"
1208 条 记 录,以下是61-70 订阅
排序:
Auxiliary Tasks Benefit Skeleton-based Action Recognition
Auxiliary Tasks Benefit Skeleton-based Action Recognition
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yuheng Yang Haipeng Chen College of Computer Science and Technology Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Skeleton-based action recognition has long been a fundamental and intriguing problem in machine intelligence. This task is challenging due to pose occlusion and rapid motion, which typically results in incomplete or n... 详细信息
来源: 评论
Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation
收藏 引用
IET Computer Vision 2025年 第1期19卷
作者: Ouyang, Jihong Zhang, Zhengjie Meng, Qingyi Chi, Jinjin College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods ofte... 详细信息
来源: 评论
Task-oriented Multi-domain Adversarial Network for fake news detection
收藏 引用
Applied Soft Computing 2025年 177卷
作者: Zeqi, Guo Jihong, Ouyang Ximing, Li Changchun, Li College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
The proliferation of fake news on online social media has severely misled public perception of event authenticity. To combat this, various Fake News Detection (FND) methods have been developed for specific domains, ty... 详细信息
来源: 评论
A METHOD FOR INCREMENTAL DISCOVERY OF FINANCIAL EVENT TYPES BASED ON ANOMALY DETECTION
arXiv
收藏 引用
arXiv 2023年
作者: Gu, Dianyue Li, Zixu Guan, Zhenhai Zhang, Rui Huang, Lan Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE Jilin University Changchun China
Event datasets in the financial domain are often constructed based on actual application scenarios, and their event types are weakly reusable due to scenario constraints;at the same time, the massive and diverse new f... 详细信息
来源: 评论
Stochastic Adversarial Networks for Multi-Domain Text Classification
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xu Wu, Yuan School of Artificial Intelligence Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University China
Adversarial training has been instrumental in advancing multi-domain text classification (MDTC). Traditionally, MDTC methods employ a shared-private paradigm, with a shared feature extractor for domain-invariant knowl... 详细信息
来源: 评论
Hybrid Parameter Update: Alleviating Imbalance Impacts for Distributed Deep Learning  24
Hybrid Parameter Update: Alleviating Imbalance Impacts for D...
收藏 引用
24th IEEE International Conference on High Performance Computing and Communications, 8th IEEE International Conference on Data Science and Systems, 20th IEEE International Conference on Smart City and 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Li, Hongliang Xu, Dong Xu, Zhewen Li, Xiang College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Changchun China
Nowadays, data parallelism has been widely applied to train large datasets on distributed deep learning clusters, but it has suffered from costly global parameter updates at batch barriers. Performance imbalance among... 详细信息
来源: 评论
In-context decision transformer: reinforcement learning via hierarchical chain-of-thought  24
In-context decision transformer: reinforcement learning via ...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Sili Huang Jifeng Hu Hechang Chen Lichao Sun Bo Yang School of Artificial Intelligence and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China School of Artificial Intelligence Jilin University China Lehigh University Bethlehem Pennsylvania Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China
In-context learning is a promising approach for offline reinforcement learning (RL) to handle online tasks, which can be achieved by providing task prompts. Recent works demonstrated that in-context RL could emerge wi...
来源: 评论
PNESR-DDI: An Effective Drug-Drug Interaction Prediction Model Based on Pretraining Method and Enhanced Subgraph Reconstruction
PNESR-DDI: An Effective Drug-Drug Interaction Prediction Mod...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Chen, Ke Han, Xiaosong Li, Xiaoran Liang, Yanchun Xu, Dong Guan, Renchu Jilin University Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry College of Software Changchun China Jilin University Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry College of Computer Science and Technology Changchun China Zhuhai College of Science and Technology Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education School of Computer Science Zhuhai China University of Missouri Christopher S. Bond Life Sciences Center Department of Electrical Engineering and Computer Science Columbia United States
Drug-Drug Interaction (DDI) task plays a crucial role in clinical treatment and drug development. Recently, deep learning methods have been successfully applied for DDI prediction. However, training deep learning mode... 详细信息
来源: 评论
SMRI: A New Method for siRNA Design for COVID-19 Therapy
收藏 引用
Journal of Computer Science & Technology 2022年 第4期37卷 991-1002页
作者: Meng-Xin Chen Xiao-Dong Zhu Hao Zhang Zhen Liu Yuan-Ning Liu College of Software Jilin UniversityChangchun 130012China Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Jilin UniversityChangchun 130012China College of Computer Science and Technology Jilin UniversityChangchun 130012China Graduate School of Engineering Nagasaki Institute of Applied ScienceNagasaki 851-0193Japan
First discovered in Wuhan, China, SARS-CoV-2 is a highly pathogenic novel coronavirus, which rapidly spreads globally and becomes a pandemic with no vaccine and limited distinctive clinical drugs available till March ... 详细信息
来源: 评论
Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss  38
Semi-supervised Multi-label Learning with Balanced Binary An...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Li, Ximing Liang, Silong Li, Changchun Wang, Pengfei Gu, Fangming College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Computer Network Information Center Chinese Academy of Sciences China University of Chinese Academy of Sciences Chinese Academy of Sciences China
Semi-supervised multi-label learning (SSMLL) refers to inducing classifiers using a small number of samples with multiple labels and many unlabeled samples. The prevalent solution of SSMLL involves forming pseudo-labe...
来源: 评论