咨询与建议

限定检索结果

文献类型

  • 17 篇 会议
  • 16 篇 期刊文献

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 6 篇 生物工程
    • 4 篇 光学工程
    • 4 篇 信息与通信工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
  • 16 篇 理学
    • 8 篇 数学
    • 6 篇 生物学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 1 篇 化学
  • 8 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 4 篇 motion estimatio...
  • 4 篇 algorithm design...
  • 4 篇 image analysis
  • 4 篇 calibration
  • 3 篇 filters
  • 3 篇 pattern recognit...
  • 3 篇 pattern analysis
  • 3 篇 shape
  • 3 篇 robustness
  • 3 篇 parameter estima...
  • 3 篇 inspection
  • 2 篇 air cleaners
  • 2 篇 motion analysis
  • 2 篇 information anal...
  • 2 篇 least squares me...
  • 2 篇 face recognition
  • 2 篇 cameras
  • 2 篇 scattering
  • 2 篇 machine vision
  • 2 篇 quaternions

机构

  • 5 篇 ai and pattern r...
  • 4 篇 ai optimization ...
  • 3 篇 national laborat...
  • 3 篇 pattern recognit...
  • 2 篇 ai and pattern r...
  • 2 篇 shanghai ai lab
  • 2 篇 tsinghua univers...
  • 2 篇 pattern recognit...
  • 2 篇 the coai group d...
  • 2 篇 school of artifi...
  • 2 篇 department of co...
  • 2 篇 sensetime group ...
  • 1 篇 ant group co. lt...
  • 1 篇 institute of sof...
  • 1 篇 beijing national...
  • 1 篇 the school of co...
  • 1 篇 icvs/3b’s - pt g...
  • 1 篇 ai and pattern r...
  • 1 篇 faculty of engin...
  • 1 篇 school of psycho...

作者

  • 8 篇 m.a. rodrigues
  • 4 篇 zhou jie
  • 4 篇 yonghuai liu
  • 4 篇 seneviratne sach...
  • 4 篇 halgamuge saman
  • 3 篇 rodrigues marcos...
  • 3 篇 huang minlie
  • 3 篇 liu yonghuai
  • 3 篇 ranasinghe nisal
  • 3 篇 zhou hao
  • 2 篇 li peng
  • 2 篇 senanayake damit...
  • 2 篇 lin yankai
  • 2 篇 y. liu
  • 2 篇 zhu xiaoyan
  • 2 篇 othman zulaiha a...
  • 1 篇 chen liangyi
  • 1 篇 chen yulu
  • 1 篇 li tongtong
  • 1 篇 zheng chujie

语言

  • 31 篇 英文
  • 2 篇 其他
检索条件"机构=AI Optimization and Pattern Recognition Research Group"
33 条 记 录,以下是1-10 订阅
排序:
Graph-Eq: Discovering Mathematical Equations using Graph Generative Models
arXiv
收藏 引用
arXiv 2025年
作者: Ranasinghe, Nisal Senanayake, Damith Halgamuge, Saman AI Optimization and Pattern Recognition Research Group Dept. of Mechanical Eng. University of Melbourne Australia
—The ability to discover meaningful, accurate, and concise mathematical equations that describe datasets is valuable across various domains. Equations offer explicit relationships between variables, enabling deeper i... 详细信息
来源: 评论
Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Bogahawatte, Jayanie Seneviratne, Sachith Perera, Maneesha Halgamuge, Saman AI Optimization and Pattern Recognition Research Group Dept. of Mechanical Eng. University of Melbourne Australia
Adapting Large Language Models (LLMs) that are extensively trained on abundant text data, and customizing the input prompt to enable time series forecasting has received considerable attention. While recent work has s... 详细信息
来源: 评论
GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Ranasinghe, Nisal Xia, Yu Seneviratne, Sachith Halgamuge, Saman AI Optimization and Pattern Recognition Research Group Dept. of Mechanical Eng. University of Melbourne Australia
Neural networks are powerful function approximators, yet their "black-box" nature often renders them opaque and difficult to interpret. While many post-hoc explanation methods exist, they typically fail to c... 详细信息
来源: 评论
Leveraging Segment-Anything model for automated zero-shot road width extraction from aerial imagery
Leveraging Segment-Anything model for automated zero-shot ro...
收藏 引用
2023 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2023
作者: Xu, Nan Nice, Kerry Seneviratne, Sachith Stevenson, Mark Faculty of Engineering and It Department of Infrastructure Engineering Australia Melbourne School of Design Transport Health and Urban Systems Research Lab Australia The University of Melbourne Optimization and Pattern Recognition Group Faculty of Engineering and It ParkvilleVIC Australia
Segment-Anything model (SAM) is a foundation segmentation model published in April 2023. Trained on an unprecedented 11 million annotated images, the model can generate segmented masks bearing clear-cut contours by in... 详细信息
来源: 评论
GINN-LP: A Growing Interpretable Neural Network for Discovering Multivariate Laurent Polynomial Equations
arXiv
收藏 引用
arXiv 2023年
作者: Ranasinghe, Nisal Senanayake, Damith Seneviratne, Sachith Premaratne, Malin Halgamuge, Saman AI Optimization and Pattern Recognition Research Group Dept. of Mechanical Eng. University of Melbourne Australia Melbourne School of Design University of Melbourne Australia Department of Electrical and Computer Systems Engineering Monash University Australia
Traditional machine learning is generally treated as a black-box optimization problem and does not typically produce interpretable functions that connect inputs and outputs. However, the ability to discover such inter... 详细信息
来源: 评论
Leveraging Segment-Anything model for automated zero-shot road width extraction from aerial imagery
Leveraging Segment-Anything model for automated zero-shot ro...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA)
作者: Nan Xu Kerry Nice Sachith Seneviratne Mark Stevenson Department of Infrastructure Engineering Faculty of Engineering and IT Transport Health and Urban Systems Research Lab Melbourne School of Design Optimization and Pattern Recognition Group Faculty of Engineering and IT The University of Melbourne Parkville Victoria Australia
Segment-Anything model (SAM) is a foundation segmentation model published in April 2023. Trained on an unprecedented 11 million annotated images, the model can generate segmented masks bearing clear-cut contours by in...
来源: 评论
Manual-Guided Dialogue for Flexible Conversational Agents
arXiv
收藏 引用
arXiv 2022年
作者: Takanobu, Ryuichi Zhou, Hao Lin, Yankai Li, Peng Zhou, Jie Huang, Minlie The CoAI Group DCST Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Pattern Recognition Center WeChat AI Tencent Inc. China
How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be two critical issues in building a task-oriented dialogue system. In this paper, we propose a novel manual-g... 详细信息
来源: 评论
Selecting Stickers in Open-Domain Dialogue through Multitask Learning
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Zhexin Zhu, Yeshuang Fei, Zhengcong Zhang, Jinchao Zhou, Jie The CoAI Group DCST China Institute for Artificial Intelligence China State Key Lab of Intelligent Technology and Systems China Beijing National Research Center for Information Science and Technology China Tsinghua University Beijing100084 China Pattern Recognition Center WeChat AI Tencent Inc China
With the increasing popularity of online chatting, stickers are becoming important in our online communication. Selecting appropriate stickers in open-domain dialogue requires a comprehensive understanding of both dia... 详细信息
来源: 评论
CTRLEval: An Unsupervised Reference-Free Metric for Evaluating Controlled Text Generation
arXiv
收藏 引用
arXiv 2022年
作者: Ke, Pei Zhou, Hao Lin, Yankai Li, Peng Zhou, Jie Zhu, Xiaoyan Huang, Minlie The CoAI group DCST Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Pattern Recognition Center WeChat AI Tencent Inc. China Tsinghua University China
Existing reference-free metrics have obvious limitations for evaluating controlled text generation models. Unsupervised metrics can only provide a task-agnostic evaluation result which correlates weakly with human jud...
来源: 评论
Description-Enhanced Label Embedding Contrastive Learning for Text Classification
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Kun Wu, Le Lv, Guangyi Chen, Enhong Ruan, Shulan Liu, Jing Zhang, Zhiqiang Zhou, Jun Wang, Meng School of Computer and Information Hefei University of Technology Anhui Hefei230029 China AI Lab Lenovo Research Beijing100094 China The School of Computer Science and Technology University of Science and Technology of China Hefei230026 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Ant Group CO. Ltd Hangzhou310007 China
Text Classification is one of the fundamental tasks in natural language processing, which requires an agent to determine the most appropriate category for input sentences. Recently, deep neural networks have achieved ... 详细信息
来源: 评论