咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 理学
    • 15 篇 物理学
    • 6 篇 数学
    • 6 篇 地球物理学
    • 5 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生物学
  • 16 篇 工学
    • 6 篇 核科学与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
    • 1 篇 纺织科学与工程
    • 1 篇 生物工程
  • 8 篇 医学
    • 8 篇 临床医学

主题

  • 6 篇 cosmological par...
  • 6 篇 large scale stru...
  • 5 篇 dark energy
  • 4 篇 galaxies
  • 4 篇 dark matter
  • 3 篇 magnetic resonan...
  • 3 篇 gravitational le...
  • 2 篇 optical, uv, & i...
  • 2 篇 cosmological con...
  • 2 篇 cosmology
  • 2 篇 machine learning
  • 1 篇 dynamical system...
  • 1 篇 probes
  • 1 篇 deep learning
  • 1 篇 biomedical engin...
  • 1 篇 learning strateg...
  • 1 篇 information tech...
  • 1 篇 evolution of the...
  • 1 篇 chemoinformatics
  • 1 篇 computational sc...

机构

  • 11 篇 institute of cos...
  • 11 篇 jodrell bank cen...
  • 11 篇 kavli institute ...
  • 9 篇 department of ph...
  • 8 篇 cerro tololo int...
  • 8 篇 university of no...
  • 8 篇 institute of ast...
  • 7 篇 artificial intel...
  • 7 篇 instituto de fís...
  • 7 篇 institute for as...
  • 7 篇 department of as...
  • 7 篇 kavli institute ...
  • 6 篇 george p. and cy...
  • 6 篇 department of ph...
  • 6 篇 department of ph...
  • 6 篇 department of ph...
  • 6 篇 nsf ai planning ...
  • 6 篇 fermi national a...
  • 6 篇 department of ph...
  • 6 篇 astronomy unit d...

作者

  • 9 篇 christos davatzi...
  • 8 篇 junhao wen
  • 7 篇 ilya m. nasralla...
  • 7 篇 guray erus
  • 6 篇 carnero rosell a...
  • 6 篇 i. tutusaus
  • 6 篇 j. weller
  • 6 篇 becker m.r.
  • 6 篇 g. tarle
  • 6 篇 a. choi
  • 6 篇 fang x.
  • 6 篇 j. l. marshall
  • 6 篇 i. harrison
  • 6 篇 d. j. james
  • 6 篇 j. derose
  • 6 篇 b. yin
  • 6 篇 gschwend j.
  • 6 篇 h. t. diehl
  • 6 篇 aguena m.
  • 6 篇 c. sánchez

语言

  • 37 篇 英文
  • 1 篇 其他
检索条件"机构=AI2D Center for AI and Data Science"
38 条 记 录,以下是1-10 订阅
排序:
Neuroanatomical Heterogeneity and Similarities Across Nine ai dimensions in Four Brain disorders in the General Population
收藏 引用
Biological Psychiatry 2025年 第9期97卷 S40-S40页
作者: Filippos Anagnostakis Christos davatzikos Junhao Wen Laboratory of AI and Biomedical Science (LABS) University of Southern California Los Angeles Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for AI and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Columbia University
来源: 评论
Pitfalls of defacing whole-head MRI: re-identification risk with diffusion models and compromised research potential
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Chenyu Xu, Kaiwen Kim, Michael E. Zuo, Lianrui Li, Zhiyuan Archer, derek B. Hohman, Timothy J. Moore, Ann Zenobia Ferrucci, Luigi Beason-Held, Lori L. Resnick, Susan M. davatzikos, Christos Prince, Jerry L. Landman, Bennett A. Department of Electrical and Computer Engineering Vanderbilt University NashvilleTN United States Department of Computer Science Vanderbilt University NashvilleTN United States Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center NashvilleTN United States Department of Neurology Vanderbilt University Medical Center NashvilleTN United States Translational Gerontology Branch National Institute on Aging National Institutes of Health BaltimoreMD United States Laboratory of Behavioral Neuroscience National Institute on Aging National Institutes of Health BaltimoreMD United States AI2D Center for AI and Data Science University of Pennsylvania Philadelphia United States Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD United States
defacing is often applied to head magnetic resonance image (MRI) datasets prior to public release to address privacy concerns. The alteration of facial and nearby voxels has provoked discussions about the true capabil... 详细信息
来源: 评论
Multi-organ metabolome biological age implicates cardiometabolic conditions and mortality risk
收藏 引用
Nature communications 2025年 第1期16卷 4871页
作者: Filippos Anagnostakis Sarah Ko Mehrshad Saadatinia Jingyue Wang Christos davatzikos Junhao Wen Laboratory of AI and Biomedical Science (LABS) Columbia University New York NY USA. Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for AI and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA. Laboratory of AI and Biomedical Science (LABS) Columbia University New York NY USA. junhao.wen89@***. Department of Radiology Columbia University New York NY USA. junhao.wen89@***. New York Genome Center (NYGC) New York NY USA. junhao.wen89@***. Department of Biomedical Engineering (BME) Columbia University New York NY USA. junhao.wen89@***. Data Science Institute (DSI) Columbia University New York NY USA. junhao.wen89@***. Zuckerman Institute Columbia University New York NY USA. junhao.wen89@***. Center for Innovation in Imaging Biomarkers and Integrated Diagnostics (CIMBID) Department of Radiology Columbia University New York NY USA. junhao.wen89@***.
Multi-organ biological aging clocks across different organ systems have been shown to predict human disease and mortality. Here, we extend this multi-organ framework to plasma metabolomics, developing five organ-speci...
来源: 评论
Machine Learning in Chemoinformatics and Medicinal Chemistry
收藏 引用
Biomedical data science 1000年 第1期5卷 43-65页
作者: Raquel Rodríguez-Pérez Filip Miljković Jürgen Bajorath 2Current affiliation: Novartis Institutes for Biomedical Research Novartis Campus Basel Switzerland 1Department of Life Science Informatics B-IT (Bonn-Aachen International Center for Information Technology) Chemical Biology and Medicinal Chemistry Program Unit LIMES (Life and Medical Sciences Institute) Rheinische Friedrich-Wilhelms-Universität Bonn Germany email: bajorath@bit.uni-bonn.de 3Current affiliation: Data Science and AI Imaging and Data Analytics Clinical Pharmacology and Safety Sciences R&D AstraZeneca Gothenburg Sweden
In chemoinformatics and medicinal chemistry, machine learning has evolved into an important approach. In recent years, increasing computational resources and new deep learning algorithms have put machine learning onto... 详细信息
来源: 评论
Artificial intelligence reveals brain aging patterns in 27,402 individuals without diagnosed cognitive impairment that are linked to genetics, biomedical measures, and cognitive decline
收藏 引用
Alzheimer's & dementia 2023年 第S17期19卷
作者: Ioanna Skampardoni Ilya M. Nasrallah Junhao Wen Yuhan Cui Ahmed Abdulkadir Zhijian Yang Guray Erus Elizabeth Mamourian Ashish Singh Haochang Shou Li Shen Konstantina Nikita Christos davatzikos iSTAGING consortium School of Electrical and Computer Engineering National Technical University of Athens Athens Greece Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Correspondece Department of Radiology University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Laboratory for Research in Neuroimaging Department of Clinical Neurosciences Lausanne University Hospital (CHUV) and University of Lausanne Lausanne Switzerland 1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Biostatistics Epidemiology & Informatics University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA USA
Background Understanding heterogeneity of structural brain changes in aging may provide insights into susceptibility to neurodegenerative diseases. We characterize the genetics underlying brain structural heterogeneit...
来源: 评论
Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Chenyu Kim, Michael E. Ramadass, Karthik Kanakaraj, Praitayini Krishnan, Aravind R. Saunders, Adam M. Newlin, Nancy R. Lee, Ho Hin Yang, Qi Taylor, Warren d. Boyd, Brian d. Beason-Held, Lori L. Resnick, Susan M. Barnes, Lisa L. Bennett, david A. Van Schaik, Katherine d. Archer, derek B. Hohman, Timothy J. Jefferson, Angela L. Išgum, Ivana Moyer, daniel Huo, Yuankai Schilling, Kurt G. Zuo, Lianrui Bao, Shunxing Khairi, Nazirah Mohd Li, Zhiyuan davatzikos, Christos Landman, Bennett A. Department of Electrical and Computer Engineering Vanderbilt University NashvilleTN37240 United States Department of Computer Science Vanderbilt University NashvilleTN37240 United States Vanderbilt Center for Cognitive Medicine Department of Psychiatry and Behavioral Sciences Vanderbilt University Medical Center NashvilleTN United States Geriatric Research Education and Clinical Center Veterans Affairs Tennessee Valley Health System NashvilleTN United States Laboratory of Behavioral Neuroscience National Institute on Aging National Institutes of Health BaltimoreMD United States Rush Alzheimer’s Disease Center Rush University Medical Center ChicagoIL United States Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville United States Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center NashvilleTN37240 United States Department of Neurology Vanderbilt University Medical Center NashvilleTN37240 United States Department of Medicine Vanderbilt University Medical Center NashvilleTN37240 United States Department of Biomedical Engineering and Physics Department of Radiology and Nuclear Medicine Amsterdam University Medical Center University of Amsterdam Amsterdam Netherlands AI2D Center for AI and Data Science University of Pennsylvania PhiladelphiaPA19104 United States
Estimated brain age from magnetic resonance image (MRI) and its deviation from chronological age can provide early insights into potential neurodegenerative diseases, supporting early detection and implementation of p... 详细信息
来源: 评论
IMG-09. A dEEP LEARNING-BASEd APPROACH FOR BRaiN TISSUE EXTRACTION USING MULTI- ANd SINGLE-PARAMETRIC MRI IN PEdIATRICS
收藏 引用
Neuro-Oncology 2024年 第SUPPLEMENT_4期26卷 0–0页
作者: deep B Gandhi Anurag Gottipati Wenxin Tu Ariana Familiar Shuvanjan Haldar Neda Khalili Paarth Jain Karthik Viswanathan Phillip B Storm Adam C Resnick Jeffrey B Ware Arastoo Vossough Ali Nabavizadeh Anahita Fathi Kazerooni Center for Data-Driven Discovery in Biomedicine (D3b) The Children’s Hospital of Philadelphia Philadelphia PA USA Department of Neurosurgery Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Neurosurgery The Children’s Hospital of Philadelphia Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Division of Radiology Children’s Hospital of Philadelphia Philadelphia PA USA AI2D Center for AI and Data Science for Integrated Diagnostics University of Pennsylvania Philadelphia PA USA
BACKGROUNdSkull-stripping, the process of extracting brain tissue from MR images, is an important step for tumor segmentation and downstream imaging-based analytics such as ai-powered radiomic feature extraction. Exis...
来源: 评论
NIMG-65. SYNTHETIC MRI GENERATION TO FACILITATE AUTOSEGMENTATION OF PEdIATRIC BRaiN TUMORS IN LIMITEd data SCENARIOS
收藏 引用
Neuro-Oncology 2024年 第SUPPLEMENT_8期26卷 viii210–viii210页
作者: Chrysochoou, dimosthenis Gandhi, deep Familiar, Ariana Vossough, Arastoo Storm, Phillip Resnick, Adam davatzikos, Christos Nabavizadeh, Ali Kazerooni, Anahita Fathi Department of Bioengineering University of Pennsylvania Philadelphia USA Center for Data-Driven Discovery in Biomedicine (D3b) The Children’s Hospital of Philadelphia Philadelphia USA Division of Radiology Children’s Hospital of Philadelphia Philadelphia USA Department of Neurosurgery Perelman School of Medicine University of Pennsylvania Philadelphia USA Department of Neurosurgery The Children’s Hospital of Philadelphia Philadelphia USA AI2D Center for AI and Data Science for Integrated Diagnostics University of Pennsylvania Philadelphia USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia USA
来源: 评论
deep Learning patterns of Aβ accumulation in Alzheimer’s disease
收藏 引用
Alzheimer's & dementia 2023年 第S17期19卷
作者: dhivya Srinivasan Ilya M. Nasrallah Zhijian Yang Murat Bilgel Junhao Wen Guray Erus Yuhan Cui Elizabeth Mamourian Aristeidis Sotiras Tobey J Betthauser Susan M. Resnick duygu Tosun Marilyn S. Albert Christos davatzikos for the Alzheimer’s disease Neuroimaging Initiative,the iSTAGING consortium, & the Preclinical Ad consortium Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Correspondece Department of Radiology University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadephia PA USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore USA Baltimore MD USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Laboratory of AI and Biomedical Science Stevens Neuroimaging and Informatics Institute Keck School of Medicine of USC University of Southern California Marina del Rey CA USA 4Department of Radiology Washington University in St. Louis St. Louis MO USA Department of Medicine University of Wisconsin-Madison Madison WI USA Wisconsin Alzheimer’s Disease Research Center University of Wisconsin-Madison School of Medicine and Public Health Madison WI USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore MD USA Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA USA Department of Neurology Johns Hopkins University School of Medicine Baltimore MD USA
Background Accumulation of amyloid (Aß) plaques is an early pathologic change of Alzheimer’s disease (Ad). However, the mechanisms and pathways by which amyloid spreads across the cerebrum are not fully understo...
来源: 评论
P13.13.B INTERPRETABLE WHOLE SLIdE IMAGE PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS FURTHERING dISEASE UNdERSTANdING
收藏 引用
Neuro-Oncology 2023年 第SUPPLEMENT_2期25卷 ii103–ii104页
作者: Baheti, B Innani, S Mehdiratta, G Nasrallah, M P Bakas, S Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States
来源: 评论