咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 理学
    • 15 篇 物理学
    • 6 篇 数学
    • 6 篇 地球物理学
    • 5 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生物学
  • 16 篇 工学
    • 6 篇 核科学与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
    • 1 篇 纺织科学与工程
    • 1 篇 生物工程
  • 8 篇 医学
    • 8 篇 临床医学

主题

  • 6 篇 cosmological par...
  • 6 篇 large scale stru...
  • 5 篇 dark energy
  • 4 篇 galaxies
  • 4 篇 dark matter
  • 3 篇 magnetic resonan...
  • 3 篇 gravitational le...
  • 2 篇 optical, uv, & i...
  • 2 篇 cosmological con...
  • 2 篇 cosmology
  • 2 篇 machine learning
  • 1 篇 dynamical system...
  • 1 篇 probes
  • 1 篇 deep learning
  • 1 篇 biomedical engin...
  • 1 篇 learning strateg...
  • 1 篇 information tech...
  • 1 篇 evolution of the...
  • 1 篇 chemoinformatics
  • 1 篇 computational sc...

机构

  • 11 篇 institute of cos...
  • 11 篇 jodrell bank cen...
  • 11 篇 kavli institute ...
  • 9 篇 department of ph...
  • 8 篇 cerro tololo int...
  • 8 篇 university of no...
  • 8 篇 institute of ast...
  • 7 篇 artificial intel...
  • 7 篇 instituto de fís...
  • 7 篇 institute for as...
  • 7 篇 department of as...
  • 7 篇 kavli institute ...
  • 6 篇 george p. and cy...
  • 6 篇 department of ph...
  • 6 篇 department of ph...
  • 6 篇 department of ph...
  • 6 篇 nsf ai planning ...
  • 6 篇 fermi national a...
  • 6 篇 department of ph...
  • 6 篇 astronomy unit d...

作者

  • 9 篇 christos davatzi...
  • 8 篇 junhao wen
  • 7 篇 ilya m. nasralla...
  • 7 篇 guray erus
  • 6 篇 carnero rosell a...
  • 6 篇 i. tutusaus
  • 6 篇 j. weller
  • 6 篇 becker m.r.
  • 6 篇 g. tarle
  • 6 篇 a. choi
  • 6 篇 fang x.
  • 6 篇 j. l. marshall
  • 6 篇 i. harrison
  • 6 篇 d. j. james
  • 6 篇 j. derose
  • 6 篇 b. yin
  • 6 篇 gschwend j.
  • 6 篇 h. t. diehl
  • 6 篇 aguena m.
  • 6 篇 c. sánchez

语言

  • 37 篇 英文
  • 1 篇 其他
检索条件"机构=AI2D Center for AI and Data Science"
38 条 记 录,以下是11-20 订阅
排序:
OS03.6.A UNSUPERVISEd CLUSTERING OF MORPHOLOGY PATTERNS ON WHOLE SLIdE IMAGES GUIdE PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS
收藏 引用
Neuro-Oncology 2023年 第SUPPLEMENT_2期25卷 ii15-ii15页
作者: Baheti, B Innani, S Nasrallah, M P Bakas, S Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States
来源: 评论
Genetic variants underlying the neuro-anatomical signatures of hypertension measured on structural MRI
收藏 引用
Alzheimer's & dementia 2023年 第S10期19卷
作者: Sindhuja Tirumalai Govindarajan Elizabeth Mamourian Yuhan Cui Junhao Wen Guray Erus Ahmed Abdulkadir Randa Melhem R Nick Bryan Haochang Shou david A. Wolk Ilya M. Nasrallah Christos davatzikos Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Pennsylvania Health System Philadeplphia PA USA Department of Neurology University of Pennsylvania School of Medicine Philadelphia PA USA
Background Hypertension (HTN) is associated with gray matter (GM) atrophy and increased white matter hyperintensity (WMH) burden, increasing their susceptibility to Alzheimer’s disease and related dementias. We devel...
来源: 评论
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
arXiv
收藏 引用
arXiv 2023年
作者: Cheng, Sibo Quilodrán-Casas, César Ouala, Said Farchi, Alban Liu, Che Tandeo, Pierre Fablet, Ronan Lucor, didier Iooss, Bertrand Brajard, Julien Xiao, dunhui Janjic, Tijana ding, Weiping Guo, Yike Carrassi, Alberto Bocquet, Marc Arcucci, Rossella Data Science Institute Department of Computing Imperial College London LondonSW7 2AZ United Kingdom Department of Earth Science and Engineering Imperial College London LondonSW7 2AZ United Kingdom Department of Computer Science and Engineering Hong Kong University of Science and Technology 999077 Hong Kong IMT Atlantique Lab-STICC UMR CNRS 6285 France and Odyssey Inria/IMT France RIKEN Center for Computational Science Kobe Japan CEREA École des Ponts and EDF R&D île-de-France France The Laboratoire Interdisciplinaire des Sciences du Numérique CNRS Paris-Saclay University OrsayF-91403 France 78401 Chatou France Institut de Mathématiques de Toulouse Toulouse31062 France SINCLAIR AI Lab Saclay France Bergen Norway School of Mathematical Sciences Tongji University Shanghai200092 China Mathematical Institute for Machine Learning and Data Science KU Eichstätt-Ingolstadt Bavaria Germany School of Information Science and Technology Nantong University Nantong226019 China Department of Physics and Astronomy Augusto Righi University of Bologna Bologna40124 Italy
data Assimilation (dA) and Uncertainty quantification (UQ) are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical applications span from computational f... 详细信息
来源: 评论
A multivariate MRI model of Alzheimer’s disease risk is associated with clinical diagnosis, PET imaging, and plasma biomarkers in a mixed dementia sample
收藏 引用
Alzheimer's & dementia 2023年 第S10期19卷
作者: Jeffrey S Phillips Sindhuja Tirumalai Govindarajan Gyujoon Hwang Guray Erus Katheryn A Q Cousins Sandhitsu R. das david A. Wolk david J. Irwin Murray Grossman Ilya M. Nasrallah Christos davatzikos Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Penn Alzheimer’s Disease Research Center University of Pennsylvania Philadelphia PA USA Frontotemporal Degeneration Center Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Pennsylvania Philadelphia PA USA
Background We sought to validate two structural MRI-based brain health models: Spatial Pattern of Atrophy for REcognition of Alzheimer’s disease (SPARE-Ad) and SPARE-Brain Age Gap (SPARE-BAG), which estimates the dis...
来源: 评论
Cross-scale functional connectivity patterns of the aging brain learned from the multi-cohort iSTAGing study
收藏 引用
Alzheimer's & dementia 2023年 第S17期19卷
作者: Zhen Zhou Hongming Li Chau B Tran Yuncong Ma dhivya Srinivasan Ahmed Abdulkadir Junhao Wen Guray Erus Elizabeth Mamourian Ilya M. Nasrallah Nick Bryan david A. Wolk Lori L Beason-Held Susan M. Resnick Haochang Shou Christos davatzikos Yong Fan University of Pennsylvania philadelphia PA USA Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Laboratory for Research in Neuroimaging Department of Clinical Neurosciences Lausanne University Hospital (CHUV) and University of Lausanne Lausanne Switzerland Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Texas at Austin Austin TX USA Department of Pathology and Laboratory Medicine Alzheimer’s Disease Center Perelman School of Medicine University of Pennsylvania Philadelphia PA USA National Institute on Aging Baltimore MD USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore MD USA Department of Biostatistics Epidemiology & Informatics University of Pennsylvania Philadelphia PA USA Correspondece
Background Brain functional connectivity (FC) measures derived from resting-state fMRI (rsfMRI) data have advanced our understanding of the brain organization. However, most existing studies investigate the brain func...
来源: 评论
discovering Alzheimer’s disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
收藏 引用
Alzheimer's & dementia 2023年 第S17期19卷
作者: Zhijian Yang Junhao Wen Ahmed Abdulkadir Yuhan Cui Guray Erus Elizabeth Mamourian Randa Melhem dhivya Srinivasan Sindhuja Tirumalai Govindarajan Jiong Chen Mohamad Habes Colin L Masters Paul Maruff Jurgen Fripp Luigi Ferrucci Marilyn S. Albert Sterling C Johnson John C Morris Pamela LaMontagne daniel S. Marcus Tammie L.S. Benzinger david A. Wolk Li Shen Jingxuan Bao Susan M. Resnick duygu Tosun Haochang Shou Ilya M. Nasrallah Christos davatzikos the Alzheimer’s disease Neuroimaging Initiative, the Preclinical Ad Consortium, the Baltimore Longitudinal Study of Aging, and the iSTAGING study 1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Correspondece Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Bern Bern Switzerland Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA University of Texas Health San Antonio San Antonio TX USA Florey Institute of Neuroscience and Mental Health Parkville VIC Australia The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia CSIRO Health and Biosecurity Australian E-Health Research Centre Brisbane QLD Australia National Institute on Aging NIH Baltimore MD USA Department of Neurology Johns Hopkins University School of Medicine Baltimore MD USA Wisconsin Alzheimer’s Institute University of Wisconsin-Madison School of Medicine and Public Health Madison WI USA Knight Alzheimer Disease Research Center St. Louis MO USA Washington University School of Medicine Saint Louis MO USA Washington University School of Medicine St. Louis MO USA Department of Neurology University of Pennsylvania School of Medicine Philadelphia PA USA Institute for Biomedical Informatics University of Pennsylvania ATHENS PA USA University of Pennsylvania Philadelphia PA USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore MD USA Department of Radiology and Biomedical Imaging University of Cal
Background The heterogeneity of neurodegenerative diseases, including Alzheimer’s disease (Ad), has hampered precision diagnosis and treatment. Machine learning methods enable the identification of genetically-explai...
来源: 评论
Efficient gravitational wave template bank generation with differentiable waveforms
收藏 引用
Physical Review d 2022年 第12期106卷 122001-122001页
作者: Adam Coogan Thomas d. P. Edwards Horng Sheng Chia Richard N. George Katherine Freese Cody Messick Christian N. Setzer Christoph Weniger Aaron Zimmerman Ciela—Computation and Astrophysical Data Analysis Institute Montréal Quebec Canada Département de Physique Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Quebec H2V 0B3 Canada Mila—Quebec AI Institute 6666 St-Urbain No. 200 Montreal Quebec H2S 3H1 Canada Gravitation Astroparticle Physics Amsterdam (GRAPPA) University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands The Oskar Klein Centre Department of Physics Stockholm University AlbaNova SE-106 91 Stockholm Sweden Nordic Institute for Theoretical Physics (NORDITA) 106 91 Stockholm Sweden School of Natural Sciences Institute for Advanced Study Princeton New Jersey 08540 USA Center for Gravitational Physics University of Texas at Austin Austin Texas 78712 USA Department of Physics University of Texas at Austin Austin Texas 78712 USA LIGO Laboratory Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
The most sensitive search pipelines for gravitational waves from compact binary mergers use matched filters to extract signals from the noisy data stream coming from gravitational wave detectors. Matched-filter search... 详细信息
来源: 评论
Novel genomic loci shape two neuroanatomical dimensions of Ad in non-demented populations
收藏 引用
Alzheimer's & dementia 2023年 第S10期19卷
作者: Junhao Wen Zhijian Yang Ioanna Skampardoni Marilena de Pian Guray Erus Elizabeth Mamourian Yuhan Cui Bingxin Zhao Ilya M. Nasrallah Arthur W. Toga Haochang Shou Li Shen Christos davatzikos Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA University of Pennsylvania philadelphia PA USA Upenn Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Laboratory of Neuro Imaging (LONI) University of Southern California Los Angeles CA USA Department of Biostatistics Epidemiology & Informatics University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA Greece
Background Artificial intelligence has been in burgeoning demand to be applied to magnetic imaging resonance (MRI) data to parse the neuroanatomical heterogeneity of Alzheimer’s disease (Ad) and/or mild cognitive imp...
来源: 评论
The tracking machine learning challenge: Accuracy phase
arXiv
收藏 引用
arXiv 2019年
作者: Amrouche, Sabrina Basara, Laurent Calafiura, Paolo Estrade, Victor Farrell, Steven Ferreira, diogo R. Finnie, Liam Finnie, Nicole Germain, Cécile Gligorov, Vladimir Vava Golling, Tobias Gorbunov, Sergey Gray, Heather Guyon, Isabelle Hushchyn, Mikhail Innocente, Vincenzo Kiehn, Moritz Moyse, Edward Puget, Jean-François Reina, Yuval Rousseau, david Salzburger, Andreas Ustyuzhanin, Andrey Vlimant, Jean-Roch Wind, Johan Sokrates Xylouris, Trian Yilmaz, Yetkin Département de Physique Nucléaire et Corpusculaire Université de Genève Geneva Switzerland LRI TAU Univ. Paris-Sud INRIA CNRS Université Paris-Saclay Gif-sur-Yvette France Physics Division Lawrence Berkeley National Laboratory University of California BerkeleyCA United States IST University of Lisbon Lisbon Portugal IBM Germany Research and Development Germany Bosch Center for Artificial Intelligence Germany LPNHE Sorbonne Université Paris Diderot Sorbonne Paris Cité CNRS IN2P3 Paris France Goethe University Frankfurt am Main Germany UPSud INRIA Université Paris-Saclay Orsay France ChaLearn BerkeleyCA United States National Research University Higher School of Economics Yandex School of Data Analysis Moscow Russia CERN Geneva Switzerland Department of Physics University of Massachusetts AmherstMA United States Data and AI R&D IBM France Lab Biot France Tel-Aviv Israel LAL Univ. Paris-Sud CNRS IN2P3 Université Paris-Saclay Orsay France California Institute of Technology PasadenaCA United States Norwegian University of Science and Technology Oslo Norway Frankfurt Germany
This paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in th... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. d. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. daum M. de Bruijne A. depeursinge R. dorent J. Egger d. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner d. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia d. Zimmerer d. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira d. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi d. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论