咨询与建议

限定检索结果

文献类型

  • 735 篇 会议
  • 74 篇 期刊文献

馆藏范围

  • 809 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 501 篇 工学
    • 301 篇 电子科学与技术(可...
    • 164 篇 计算机科学与技术...
    • 99 篇 信息与通信工程
    • 93 篇 电气工程
    • 93 篇 软件工程
    • 69 篇 材料科学与工程(可...
    • 43 篇 化学工程与技术
    • 36 篇 仪器科学与技术
    • 36 篇 控制科学与工程
    • 34 篇 光学工程
    • 31 篇 机械工程
    • 19 篇 冶金工程
    • 16 篇 动力工程及工程热...
    • 11 篇 网络空间安全
    • 10 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 200 篇 理学
    • 93 篇 物理学
    • 83 篇 数学
    • 45 篇 化学
    • 18 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 8 篇 生物学
  • 30 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 10 篇 军事学
    • 10 篇 军队指挥学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 28 篇 hardware
  • 25 篇 clocks
  • 22 篇 field programmab...
  • 21 篇 throughput
  • 21 篇 cmos technology
  • 20 篇 application spec...
  • 19 篇 abstracts
  • 18 篇 logic gates
  • 18 篇 random access me...
  • 17 篇 computer archite...
  • 17 篇 switches
  • 15 篇 computational mo...
  • 15 篇 silicon
  • 14 篇 films
  • 14 篇 decoding
  • 13 篇 cmos integrated ...
  • 13 篇 substrates
  • 13 篇 voltage
  • 13 篇 algorithm design...
  • 13 篇 field programmab...

机构

  • 115 篇 state key lab of...
  • 96 篇 state key lab of...
  • 58 篇 state key lab. o...
  • 30 篇 state-key lab of...
  • 23 篇 state key lab of...
  • 19 篇 asic and system ...
  • 19 篇 asic and system ...
  • 15 篇 state-key lab. o...
  • 15 篇 state key lab of...
  • 15 篇 state key lab of...
  • 14 篇 asic & system st...
  • 13 篇 center for discr...
  • 11 篇 state key lab of...
  • 10 篇 state key lab. o...
  • 9 篇 state key lab of...
  • 8 篇 the state key la...
  • 8 篇 department of mi...
  • 7 篇 fudan university...
  • 7 篇 school of microe...
  • 6 篇 state key lab of...

作者

  • 87 篇 xiaoyang zeng
  • 44 篇 zeng xiaoyang
  • 42 篇 xuan zeng
  • 32 篇 xin-ping qu
  • 29 篇 jianli chen
  • 27 篇 jia zhou
  • 27 篇 yibo fan
  • 26 篇 jun yu
  • 24 篇 dian zhou
  • 22 篇 wei li
  • 22 篇 jun han
  • 22 篇 fan yang
  • 22 篇 junyan ren
  • 20 篇 yinyin lin
  • 20 篇 zeng xuan
  • 18 篇 chi nan
  • 18 篇 yun chen
  • 17 篇 kun wang
  • 17 篇 lingli wang
  • 16 篇 nan chi

语言

  • 764 篇 英文
  • 42 篇 中文
  • 3 篇 其他
检索条件"机构=ASIC and System State-Key Lab"
809 条 记 录,以下是161-170 订阅
排序:
An effective method of contour extraction for SEM image based on DCNN
An effective method of contour extraction for SEM image base...
收藏 引用
Advanced Patterning Solutions (IWAPS), International Workshop on
作者: Tao Zhou Xuelong Shi YanYan Chen Li Shoumian Chen Yuhang Zhao Wenzhan Zhou Kan Zhou Xuan Zeng Shanghai Integrated Circuits R&D Center Co. Ltd. Shanghai China State Key Lab of ASIC & System School of Microelectronics Fudan University Shanghai China
SEM-image contours provide valuable information about patterning quality and capability. Geometrical properties such as critical dimension and resist sidewall angle could be extracted or estimated from SEM image conto... 详细信息
来源: 评论
Effective Sparsity-Prior Image Denoising Algorithm for CMOS Image Sensor in Ultra-Low Light Imaging Applications
Effective Sparsity-Prior Image Denoising Algorithm for CMOS ...
收藏 引用
China Semiconductor Technology International Conference (CSTIC)
作者: Tao Zhou Chen Li Jiebin Duan Xuan Zeng Yuhang Zhao Shanghai Integrated Circuits R&D Center Co. Ltd. Shanghai China State Key Lab of ASIC & System School of Microelectronics Fudan University Shanghai China
An effective algorithm is designed for incorporating in a 3D stacked CMOS image sensor for image denoising in ultra-low light conditions. The algorithm originates from sparsity-prior of image and non-locally clustered... 详细信息
来源: 评论
An Efficient and Robust Yield Optimization Method for High-dimensional SRAM Circuits
An Efficient and Robust Yield Optimization Method for High-d...
收藏 引用
Design Automation Conference
作者: Xiaodong Wang Tianchen Gu Changhao Yan Xiulong Wu Fan Yang Sheng-Guo Wang Dian Zhou Xuan Zeng State Key Lab of ASIC & System Fudan University Shanghai China Anhui University Hefei China University of North Carolina at Charlotte Charlotte USA University of Texas at Dallas Dallas USA
Due to time-consuming SPICE simulations and extremely low failure rates, yield optimization for large static random access memory (SRAM) circuits is still a challenging problem. In this paper, a novel robust yield opt... 详细信息
来源: 评论
A Novel PUF Using Stochastic Short-Term Memory Time of Oxide-Based RRAM for Embedded Applications
A Novel PUF Using Stochastic Short-Term Memory Time of Oxide...
收藏 引用
International Electron Devices Meeting (IEDM)
作者: Jianguo Yang Deyang Chen Qinting Ding Jinbei Fang Xiaoyong Xue Hangbing Lv Xiaoyang Zeng Ming Liu Zhejiang Lab Hangzhou China Key Laboratory of Microelectronics Devices and Integrated Technology Institute of Microelectronics of the Chinese Academy of Sciences Beijing China State Key Laboratory of ASIC and System School of Microelectronics Fudan University Shanghai China
RRAM suffers from poor retention with short-term memory time when using low compliance current for programing. However, the short-term memory time exhibits ideal randomness, which can be exploited as an entropy source... 详细信息
来源: 评论
Multi-Corner Parametric Yield Estimation via Bayesian Inference on Bernoulli Distribution with Conjugate Prior
Multi-Corner Parametric Yield Estimation via Bayesian Infere...
收藏 引用
IEEE International Symposium on Circuits and systems (ISCAS)
作者: Jiahe Shi Zhengqi Gao Jun Tao Yangfeng Su Dian Zhou Xuan Zeng ASIC & System State Key Lab School of Microelectronics Fudan University Shanghai China School of Mathematical Sciences Fudan University Shanghai China Dept. of EE University of Texas at Dallas Dallas USA
To efficiently estimate parametric yields over multiple process, voltage, temperature corners for binary output circuits, we propose a novel Bayesian Inference method based on Bernoulli distribution with conjugate pri... 详细信息
来源: 评论
An Efficient Bayesian Optimization Approach for Analog Circuit Synthesis via Sparse Gaussian Process Modeling
An Efficient Bayesian Optimization Approach for Analog Circu...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition
作者: Biao He Shuhan Zhang Fan Yang Changhao Yan Dian Zhou Xuan Zeng State Key Lab of ASIC & System School of Microelectronics Fudan University Shanghai P. R. China Department of Electrical Engineering University of Texas at Dallas Richardson TX U.S.A.
Bayesian optimization with Gaussian Process (GP) models has been proposed for analog synthesis since it is efficient for the optimizations of expensive black-box functions. However, the computational cost for training... 详细信息
来源: 评论
Projection based active Gaussian process regression for pareto front modeling
arXiv
收藏 引用
arXiv 2020年
作者: Gao, Zhengqi Tao, Jun Su, Yangfeng Zhou, Dian Zeng, Xuan ASIC & System State Key Lab School of Microelectronics Fudan University Shanghai China School of Mathematical Sciences Fudan University Shanghai China Department of EE University of Texas at Dallas Dallas United States
Pareto Front (PF) modeling is essential in decision making problems across all domains such as economics, medicine or engineering. In Operation Research literature, this task has been addressed based on multi-objectiv... 详细信息
来源: 评论
An Efficient Asynchronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis
An Efficient Asynchronous Batch Bayesian Optimization Approa...
收藏 引用
Design Automation Conference
作者: Shuhan Zhang Fan Yang Dian Zhou Xuan Zeng State Key Lab of ASIC & System School of Microelectronics Fudan University Shanghai P. R. China Department of Electrical Engineering University of Texas at Dallas Richardson TX U.S.A.
In this paper, we propose EasyBO, an Efficient ASYn-chronous Batch Bayesian Optimization approach for analog circuit synthesis. In this proposed approach, instead of waiting for the slowest simulations in the batch to... 详细信息
来源: 评论
Learning Low-Rank Structured Sparsity in Recurrent Neural Networks
Learning Low-Rank Structured Sparsity in Recurrent Neural Ne...
收藏 引用
IEEE International Symposium on Circuits and systems (ISCAS)
作者: Weijing Wen Fan Yang Yangfeng Su Dian Zhou Xuan Zeng State Key Lab of ASIC & System School of Microelectronics Fudan University China School of Mathematical Sciences Fudan University China Department of Electrical Engineering University of Texas at Dallas Richardson TX U.S.A
Acceleration and wide deployability in deeper recurrent neural network is hindered by high demand for computation and memory storage on devices with memory and latency constraints. In this work, we propose a novel reg... 详细信息
来源: 评论
Learning Sparse Patterns in Deep Neural Networks
Learning Sparse Patterns in Deep Neural Networks
收藏 引用
International Conference on asic
作者: Weijing Wen Fan Yang Yangfeng Su Dian Zhou Xuan Zeng State Key Lab of ASIC & System Fudan University Shanghai China Fudan University Shanghai China
Acceleration in deeper neural networks is hindered by high demand for computation and memory storage in resource constrained devices. In this paper, we propose a novel regularization method to learn hardware-friendly ...
来源: 评论