咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 30 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 10 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 6 篇 生物工程
    • 5 篇 电气工程
    • 4 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 2 篇 网络空间安全
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
  • 14 篇 理学
    • 7 篇 生物学
    • 6 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 5 篇 reinforcement le...
  • 4 篇 deep learning
  • 3 篇 intelligent robo...
  • 3 篇 computational mo...
  • 3 篇 navigation
  • 3 篇 machine learning
  • 3 篇 training
  • 2 篇 representation l...
  • 2 篇 rendering (compu...
  • 2 篇 deep neural netw...
  • 2 篇 task analysis
  • 2 篇 safety
  • 2 篇 generative adver...
  • 2 篇 neural networks
  • 2 篇 optimization
  • 2 篇 neuromorphic com...
  • 2 篇 adversarial mach...
  • 2 篇 electrocardiogra...
  • 2 篇 location awarene...
  • 2 篇 neural coding

机构

  • 9 篇 interdisciplinar...
  • 6 篇 seoul natl univ ...
  • 6 篇 department of el...
  • 5 篇 seoul natl univ ...
  • 5 篇 seoul natl univ ...
  • 4 篇 department of el...
  • 2 篇 seoul natl univ ...
  • 2 篇 school of comput...
  • 2 篇 seoul natl univ ...
  • 2 篇 interdisciplinar...
  • 2 篇 asri inmc isrc i...
  • 2 篇 sequor robot inc
  • 2 篇 seoul natl univ ...
  • 2 篇 division of digi...
  • 2 篇 seoul natl univ ...
  • 2 篇 asri and interdi...
  • 2 篇 seoul natl univ ...
  • 2 篇 seoul natl univ ...
  • 2 篇 seoul natl univ ...
  • 2 篇 naver ai lab

作者

  • 19 篇 yoon sungroh
  • 7 篇 oh songhwai
  • 5 篇 kim heeseung
  • 5 篇 lee kyoung mu
  • 5 篇 sungroh yoon
  • 4 篇 park seongsik
  • 4 篇 min seonwoo
  • 4 篇 moon taesup
  • 4 篇 lee junseo
  • 4 篇 jung dahuin
  • 4 篇 kim siwon
  • 4 篇 choi hyun-soo
  • 4 篇 hwang uiwon
  • 3 篇 han bohyung
  • 3 篇 lee gunmin
  • 3 篇 lee saehyung
  • 3 篇 songhwai oh
  • 3 篇 lee jaerin
  • 3 篇 kwon hyeokjin
  • 3 篇 kim minsoo

语言

  • 48 篇 英文
  • 4 篇 其他
检索条件"机构=ASRI and Interdisciplinary Program in Artificial Intelligence"
52 条 记 录,以下是51-60 订阅
排序:
Bag of Tricks for Electrocardiogram Classification With Deep Neural Networks
Bag of Tricks for Electrocardiogram Classification With Deep...
收藏 引用
Computers in Cardiology (CinC)
作者: Seonwoo Min Hyun-Soo Choi Hyeongrok Han Minji Seo Jin-Kook Kim Junsang Park Sunghoon Jung Il-Young Oh Byunghan Lee Sungroh Yoon Seoul National University Seoul South Korea T3K SK Telecom Seoul South Korea HUINNO Co. Ltd. Seoul South Korea Division of Cardiology Seoul National University Bundang Hospital Seongnam South Korea Seoul National University of Science and Technology Seoul South Korea Interdisciplinary Program in Bioinformatics Interdisciplinary Program in Artificial Intelligence ASRI INMC Institute of Engineering Research Seoul National University Seoul South Korea
Recent algorithmic advances in electrocardiogram (ECG) classification are largely contributed to deep learning. However, these methods are still based on a relatively straightforward application of deep neural network... 详细信息
来源: 评论
Pre-training of deep bidirectional protein sequence representations with structural information
arXiv
收藏 引用
arXiv 2019年
作者: Min, Seonwoo Park, Seunghyun Kim, Siwon Choi, Hyun-Soo Lee, Byunghan Yoon, Sungroh Department of Electrical and Computer engineering Seoul National University Seoul08826 Korea Republic of LG AI Research Seoul07796 Korea Republic of Clova AI Research NAVER Corp. Seongnam13561 Korea Republic of Department of Computer Science and Engineering Kangwon National University Chuncheon24341 Korea Republic of Department of Electronic and IT Media Engineering Seoul National University of Science and Technology Seoul01811 Korea Republic of Interdisciplinary Program in Artificial Intelligence ASRI INMC Institute of Engineering Research Seoul National University Seoul08826 Korea Republic of
Bridging the exponentially growing gap between the numbers of unlabeled and labeled protein sequences, several studies adopted semi-supervised learning for protein sequence modeling. In these studies, models were pre-... 详细信息
来源: 评论