咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 18 篇 会议
  • 1 册 图书

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 21 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 4 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 核科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 12 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 地质学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 2 篇 signal processin...
  • 2 篇 speech processin...
  • 2 篇 educational inst...
  • 2 篇 acoustics
  • 2 篇 data mining
  • 2 篇 transducers
  • 1 篇 knowledge based ...
  • 1 篇 free energy
  • 1 篇 adaptation
  • 1 篇 friction compens...
  • 1 篇 reliability
  • 1 篇 representation l...
  • 1 篇 road vehicles
  • 1 篇 reinforcement le...
  • 1 篇 support vector m...
  • 1 篇 prediction model...
  • 1 篇 hemodynamic maps
  • 1 篇 statistical test...
  • 1 篇 governance
  • 1 篇 automation

机构

  • 11 篇 institute for ad...
  • 6 篇 school of inform...
  • 4 篇 institute of nat...
  • 4 篇 center for llm i...
  • 4 篇 school of mathem...
  • 4 篇 key laboratory o...
  • 4 篇 guanghua school ...
  • 4 篇 xiangjiang labor...
  • 4 篇 state key labora...
  • 3 篇 northeastern uni...
  • 3 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 advanced algorit...
  • 2 篇 research institu...
  • 2 篇 school of artifi...
  • 2 篇 the academy for ...
  • 2 篇 the advanced alg...
  • 2 篇 graduate school ...
  • 1 篇 chinese academy ...
  • 1 篇 algorithms netwo...

作者

  • 10 篇 li zhiyu
  • 9 篇 xiong feiyu
  • 7 篇 tomita etsuji
  • 6 篇 tang bo
  • 5 篇 song shichao
  • 5 篇 liang xun
  • 4 篇 deng haiying
  • 4 篇 cheng peng
  • 4 篇 zhang zhongwang
  • 4 篇 wang zhonghao
  • 4 篇 xu zhi-qin john
  • 4 篇 niu simin
  • 3 篇 haraguchi makoto
  • 3 篇 okubo yoshiaki
  • 3 篇 wang hanyu
  • 3 篇 lin pengxiao
  • 3 篇 etsuji tomita
  • 2 篇 shichao song
  • 2 篇 he dawei
  • 2 篇 zou guang-an

语言

  • 33 篇 英文
  • 6 篇 其他
检索条件"机构=Advanced Algorithms Research Laboratory"
39 条 记 录,以下是11-20 订阅
排序:
Predictive Hiring System: Information Technology Consultants Soft Skills
Predictive Hiring System: Information Technology Consultants...
收藏 引用
International Conference on advanced Intelligent Systems for Sustainable Development, AI2SD 2022
作者: Lamjid, Asmaa El Bouchti, Karim Ziti, Soumia Mohamed, Reda Oussama Labrim, Hicham Riadsolh, Anouar Belkacemi, Mourad Intelligence Processing System and Security Mohammed V University in Rabat Rabat Morocco Algorithms Networks Intelligent Systems and Software Engineering Research Faculty of Sciences Mohammed V University in Rabat Rabat Morocco Advanced Systems Engineering Laboratory National School of Applied Sciences Ibn Tofail University Kenitra Morocco Faculty of Sciences Mohammed V University in Rabat Rabat Morocco
Recruiting candidates who will perform well within any organization has become a challenge in the Human Resources sector. Generally, poor recruitment can negatively reflect the progression and evolution of the organis... 详细信息
来源: 评论
Xinyu: An Efficient LLM-based System for Commentary Generation
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yiquan Tang, Bo Xi, Chenyang Yu, Yu Wang, Pengyu Liu, Yifei Kuang, Kun Deng, Haiying Li, Zhiyu Xiong, Feiyu Hu, Jie Cheng, Peng Wang, Zhonghao Wang, Yi Luo, Yi Yang, Mingchuan Zhejiang University Hangzhou China University of Science and Technology of China Hefei China Institute for Advanced Algorithms Research Shanghai China Northeastern University Shenyang China State Key Laboratory of Media Convergence Production Technology and Systems Beijing China Research Institute of China Telecom Beijing China
Commentary provides readers with a deep understanding of events by presenting diverse arguments and evidence. However, creating commentary is a time-consuming task, even for skilled commentators. Large language models... 详细信息
来源: 评论
GRAPHMOE: Amplifying Cognitive Depth of Mixture-of-Experts Network via Introducing Self-Rethinking Mechanism
arXiv
收藏 引用
arXiv 2025年
作者: Tang, Chen Lv, Bo Zheng, Zifan Yang, Bohao Zhao, Kun Liao, Ning Wang, Xiaoxing Xiong, Feiyu Li, Zhiyu Liu, Nayu Jiang, Jingchi Institute for Advanced Algorithms Research Shanghai China Institute of Computing Technology Chinese Academy of Sciences China The University of Manchester United Kingdom The University of Pittsburgh United States National Key Laboratory of Smart Farm Technologies and Systems Harbin Institute of Technology China University of Sydney Australia
Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open... 详细信息
来源: 评论
Internal Consistency and Self-Feedback in Large Language Models: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Xun Song, Shichao Zheng, Zifan Wang, Hanyu Yu, Qingchen Li, Xunkai Li, Rong-Hua Wang, Yi Wang, Zhonghao Xiong, Feiyu Li, Zhiyu The School of Information Renmin University of China Beijing China The Large Language Model Center Institute for Advanced Algorithms Research Shanghai China The School of Computer Science and Technology Beijing Institute of Technology Beijing China The State Key Laboratory of Media Convergence Production Technology and Systems Xinhua News Agency Beijing China
Large language models (LLMs) often exhibit deficient reasoning or generate hallucinations. To address these, studies prefixed with "Self-" such as Self-Consistency, Self-Improve, and Self-Refine have been in... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
REASONING BIAS OF NEXT TOKEN PREDICTION TRAINING
arXiv
收藏 引用
arXiv 2025年
作者: Lin, Pengxiao Zhang, Zhongwang Xu, Zhi-Qin John Institute of Natural Sciences MOE-LSC Shanghai Jiao Tong University China School of Mathematical Sciences Shanghai Jiao Tong University China School of Artificial Intelligence Shanghai Jiao Tong University China Key Laboratory of Marine Intelligent Equipment and System Ministry of Education China Center for LLM Institute for Advanced Algorithms Research Shanghai China
Since the inception of Large Language Models (LLMs), the quest to efficiently train them for superior reasoning capabilities has been a pivotal challenge. The dominant training paradigm for LLMs is based on next token... 详细信息
来源: 评论
AN ANALYSIS FOR REASONING BIAS OF LANGUAGE MODELS WITH SMALL INITIALIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Yao, Junjie Zhang, Zhongwang Xu, Zhi-Qin John Institute of Natural Sciences MOE-LSC Shanghai Jiao Tong University China School of Mathematical Sciences Shanghai Jiao Tong University China School of Artificial Intelligence Shanghai Jiao Tong University China Key Laboratory of Marine Intelligent Equipment and System Ministry of Education China Center for LLM Institute for Advanced Algorithms Research Shanghai China
Transformer-based Large Language Models (LLMs) have revolutionized Natural Language Processing by demonstrating exceptional performance across diverse tasks. This study investigates the impact of the parameter initial... 详细信息
来源: 评论
Low-dose Dynamic Cerebral Perfusion CT Reconstruction Method Based on Voxel-level TAC Correction
Low-dose Dynamic Cerebral Perfusion CT Reconstruction Method...
收藏 引用
第十七届中国体视学与图像分析学术会议
作者: Zixiang Chen Ying Huang Zhenxing Huang Guotao Quan Xiang Li Xin Liu Hairong Zheng Dong Liang Hu Zhanli Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Chinese Academy of Sciences Key Laboratory of Health Informatics Department of CT Physics & Algorithms United Imaging Healthcare Group
Background Dynamic cerebral perfusion computed tomography(DCP-CT) is a advanced imaging technique that help in clinical diagnosis of cerebrovascular ***,the radiation dose deposition during the repeated CT scans serio... 详细信息
来源: 评论
A Second-Order Time-Accurate, Linearly Fully Decoupled Unconditionally Energy Stable Discontinuous Galerkin Method for Tumor Growth Model
SSRN
收藏 引用
SSRN 2024年
作者: Guo, Penghao Wang, Bo Zou, Guang-An School of Mathematics and Statistics Henan University Kaifeng475004 China Henan Key Laboratory of Earth System Observation and Modeling Henan University Kaifeng475004 China The Academy for Advanced Interdisplinary Studies Henan University Zhengzhou450046 China School of Mathematics and Statistics Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms Henan University Kaifeng475004 China
In this paper, we firstly derive a tumor growth model based on free energy. For this model, the scalar auxiliary variable (SAV) is used to handle the nonlinear term. Combining the second-order backward Euler (BDF2) me... 详细信息
来源: 评论
Initialization is Critical to Whether Transformers Fit Composite Functions by Reasoning or Memorizing
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Zhongwang Lin, Pengxiao Wang, Zhiwei Zhang, Yaoyu Xu, Zhi-Qin John Institute of Natural Sciences MOE-LSC Shanghai Jiao Tong University China School of Mathematical Sciences Shanghai Jiao Tong University China Key Laboratory of Marine Intelligent Equipment and System Ministry of Education China Shanghai Seres Information Technology Co. Ltd Shanghai China Center for LLM Institute for Advanced Algorithms Research Shanghai China
Transformers have shown impressive capabilities across various tasks, but their performance on compositional problems remains a topic of debate. In this work, we investigate the mechanisms of how transformers behave o... 详细信息
来源: 评论