Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational trip...
详细信息
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this *** a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or ***,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification *** the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word ***,we use a biaffine predictor to assist in predicting the labels of word pairs for relation *** model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous ***,we evaluated our model on two publicly accessible *** experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal *** the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal *** model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyse...
详细信息
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyses rely on time-consuming and complex human operations; thus, they are only applicable to images with a small number of atoms. In addition, the analysis results vary due to observers' individual deviations. Although efforts to introduce automated methods have been performed previously, many of these methods lack sufficient labeled data or require various conditions in the detection process that can only be applied to the target material. Thus, in this study, we developed AtomGAN, which is a robust, unsupervised learning method, that segments defects in classical 2D material systems and the heterostructures of MoS2/WS2automatically. To solve the data scarcity problem, the proposed model is trained on unpaired simulated data that contain point and line defects for MoS2/WS2. The proposed AtomGAN was evaluated on both simulated and real electron microscope images. The results demonstrate that the segmented point defects and line defects are presented perfectly in the resulting figures, with a measurement precision of 96.9%. In addition, the cycled structure of AtomGAN can quickly generate a large number of simulated electron microscope images.
Container technology, as the key enabler behind microservice architectures, is widely applied in Cloud and Edge Computing. A long and continuous running of operating system (OS) hosting container-based services can en...
详细信息
Pedestrian wind flow is a critical factor in designing livable residential environments under growing complex urban *** pedestrian wind flow during the early design stages is essential but currently suffers from ineff...
详细信息
Pedestrian wind flow is a critical factor in designing livable residential environments under growing complex urban *** pedestrian wind flow during the early design stages is essential but currently suffers from inefficiencies in numerical *** learning,particularly generative adversarial networks(GAN),has been increasingly adopted as an alternative method to provide efficient prediction of pedestrian wind ***,existing GAN-based wind flow prediction schemes have limitations due to the lack of considering the spatial and frequency characteristics of wind flow *** study proposes a novel approach termed SFGAN,which embeds spatial and frequency characteristics to enhance pedestrian wind flow *** the spatial domain,Gaussian blur is employed to decompose wind flow into components containing wind speed and distinguished flow edges,which are used as the embedded spatial *** information of wind flow is obtained through discrete wavelet transformation and used as the embedded frequency *** spatial and frequency characteristics of wind flow are jointly utilized to enforce consistency between the predicted wind flow and ground truth during the training phase,thereby leading to enhanced *** results demonstrate that SFGAN clearly improves wind flow prediction,reducing Wind_MAE,Wind_RMSE and the Fréchet Inception Distance(FID)score by 5.35%,6.52%and 12.30%,compared to the previous best method,*** also analyze the effectiveness of incorporating the spatial and frequency characteristics of wind flow in predicting pedestrian wind *** reduces errors in predicting wind flow at large error intervals and performs well in wake regions and regions surrounding *** enhanced predictions provide a better understanding of performance variability,bringing insights at the early design stage to improve pedestrian wind *** proposed spatial-frequen
作者:
Shirzi, Moteaal AsadiKermani, Mehrdad R.Western University
Advanced Robotics and Mechatronic Systems Laboratory Electrical and Computer Engineering Department LondonONN6A 5B9 Canada Western University
Advanced Robotics and Mechatronic Systems Laboratory The Department of Electrical and Computer Engineering LondonONN6A 5B9 Canada
In this article, we propose a new algorithm to improve plant recognition through the use of feature descriptors. The accurate results from this identification method are essential for enabling autonomous tasks, such a...
详细信息
Even though smart meters have been widely used in power systems around the world,many consumers are still finding it hard to participate in demand response(DR)due to flat-rate retail pricing *** address this issue,thi...
详细信息
Even though smart meters have been widely used in power systems around the world,many consumers are still finding it hard to participate in demand response(DR)due to flat-rate retail pricing *** address this issue,this paper proposes a coupon-based demand response(CDR)scheme to achieve equivalent dynamic retail prices to inspire consumers’inherent ***,a security-constrained unit commitment optimization model is developed in the day-ahead market to obtain coupon rewards,which are then broadcast to consumers to motivate them to reschedule their power consumption *** evaluate the adjustment value of consumers’power consumption,a collective utility function is proposed to formulate the relationship between power quantity and coupon *** this basis,the security-constrained economic dispatch model is developed in the intra-day market to reschedule generating units’output power according to real-time load demands and fluctuating renewable *** the operation interval,a settlement method is developed to quantify consumers’electricity fees and coupon benefits on a monthly *** proposed CDR scheme avoids real-time iterative bidding process and effectively decreases the difficulty of massive,small consumers participating in *** proposed CDR is implemented in a realistic DR project in China to verify consumers’energy cost and renewables’curtailment can both be decreased.
Generative artificial intelligence systems such as large language models (LLMs) exhibit powerful capabilities that many see as the kind of flexible and adaptive intelligence that previously only humans could exhibit. ...
详细信息
Current research on scheduling mobile charging vehicles (MCVs) generally focuses on periodic and omnidirectional charging of sensor nodes (SNs). However, this approach leads to significant energy wastage, especially w...
详细信息
We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures...
详细信息
We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures(250℃)using these *** synthesis reduces the energy required for oxide conversion,thus accelerating the decomposition of organic ligands in the UV-exposed area,and promoting the formation of metal-oxygen networks,contributing to *** analysis confirmed a reduction in the conversion temperature of combustion precursors,and the prepared combustion ZrO_(2)films exhibited a high proportion of metal-oxygen bonding that constitutes the oxide lattice,along with an amorphous ***,the synergistic effect of combustion synthesis and UV/O_(3)-assisted photochemical activation resulted in patterned ZrO_(2)films forming even more complete metal-oxygen *** devices fabricated with patterned ZrO_(2)films using combustion synthesis exhibited excellent switching characteristics,including a narrow resistance distribution,endurance of 103 cycles,and retention for 105 s at 85℃,despite low-temperature *** synthesis not only enables the formation of high-quality metal oxide films with low external energy but also facilitates improved photopatterning.
We show that a classical spin liquid phase can emerge from an ordered magnetic state in the two-dimensional frustrated Shastry-Sutherland Ising lattice due to lateral confinement. Two distinct classical spin liquid st...
详细信息
We show that a classical spin liquid phase can emerge from an ordered magnetic state in the two-dimensional frustrated Shastry-Sutherland Ising lattice due to lateral confinement. Two distinct classical spin liquid states are stabilized: (i) long-range spin-correlated dimers, and (ii) exponentially decaying spin-correlated disordered states, depending on widths of W=3n, 3n+1 or W=3n+2,n being a positive integer. Stabilization of spin liquids in a square-triangular lattice moves beyond the conventional geometric paradigm of kagome, triangular, or tetrahedral arrangements of antiferromagnetic ions, where spin liquids have been discussed conventionally.
暂无评论