We showcase the impact of almost-periodicity on the parametric amplification associated with the first-order momentum gap in photonic time-crystals with time-varying permittivity. Utilizing a vectorial coupled-wave th...
详细信息
We showcase the impact of almost-periodicity on the parametric amplification associated with the first-order momentum gap in photonic time-crystals with time-varying permittivity. Utilizing a vectorial coupled-wave theory approach, we rigorously analyze the scattering by a temporal slab of the considered medium. We pinpoint a critical regime wherein flaws in material tuning paradoxically enhance amplification due to the coupling of fewer, broader modes, resulting in a higher and broader pulselike amplification envelope. Additionally, we demonstrate that the intensity reflectances of time-reversed waves corresponding to secondary “Bragg” resonances achieve remarkably high levels of subharmonic parametric amplification, with the epsilon-near-zero regime serving as a preferred candidate for experimental implementation. Our counterintuitive findings highlight the potential of intentionally leveraging modulation desynchronization and impurities in the temporal unit cell of photonic time-crystals to enhance both the level and the bandwidth of amplification.
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and adv...
详细信息
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced *** 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy ***,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia *** experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,*** optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing ***,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision *** display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory *** proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
The presence of long-range interactions is crucial in distinguishing between abstract complex networks and wave *** photonics,because electromagnetic interactions between optical elements generally decay rapidly with ...
详细信息
The presence of long-range interactions is crucial in distinguishing between abstract complex networks and wave *** photonics,because electromagnetic interactions between optical elements generally decay rapidly with spatial distance,most wave phenomena are modeled with neighboring interactions,which account for only a small part of conceptually possible ***,we explore the impact of substantial long-range interactions in topological *** demonstrate that a crystalline structure,characterized by long-range interactions in the absence of neighboring ones,can be interpreted as an overlapped *** overlap model facilitates the realization of higher values of topological invariants while maintaining bandgap width in photonic topological *** breaking of topology-bandgap tradeoff enables topologically protected multichannel signal processing with broad *** practically accessible system parameters,the result paves the way to the extension of topological physics to network science.
Finding hidden order within disorder is a common interest in material science, wave physics, and mathematics. The Riemann hypothesis, stating the locations of nontrivial zeros of the Riemann zeta function, tentatively...
详细信息
Finding hidden order within disorder is a common interest in material science, wave physics, and mathematics. The Riemann hypothesis, stating the locations of nontrivial zeros of the Riemann zeta function, tentatively characterizes statistical order in the seemingly random distribution of prime numbers. This famous conjecture has inspired various connections with different branches of physics, recently with non-Hermitian physics, quantum field theory, trapped-ion qubits, and hyperuniformity. Here we develop the computing platform for the Riemann zeta function by employing classical scattering of light. We show that the Riemann hypothesis suggests the landscape of semi-infinite optical scatterers for the perfect reflectionless condition under the Born approximation. To examine the validity of the scattering-based computation, we investigate the asymptotic behaviors of suppressed reflections with the increasing number of scatterers and the emergence of multiple scattering. The result provides another bridge between classical physics and the Riemann zeros, exhibiting the design of wave devices inspired by number theory.
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the ...
详细信息
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional(3D)spatiotemporal optical vortex(STOV)in the process of tight *** 3D STOV possesses orthogonal OAMs in the x-y,t-x,and y-t planes,and is preconditioned to overcome the spatiotemporal astigmatism effect.x,y,and t are the axes in the spatiotemporal *** corresponding focused wavepacket is calculated by employing the Debye diffraction theory,showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined *** Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit-orbit *** is the first revelation of coupling between the longitudinal OAM and the transverse OAM,paving the way for potential applications in optical trapping,laser machining,nonlinear light-matter interactions,and more.
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network ...
详细信息
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network topology and line impedance in many distribution networks,physical model-based methods may not be applicable to their *** tackle this challenge,some studies have proposed constraint learning,which replicates physical models by training a neural network to evaluate feasibility of a decision(i.e.,whether a decision satisfies all critical constraints or not).To ensure accuracy of this trained neural network,training set should contain sufficient feasible and infeasible ***,since ADNs are mostly operated in a normal status,only very few historical samples are ***,the historical dataset is highly imbalanced,which poses a significant obstacle to neural network *** address this issue,we propose an enhanced constraint learning ***,it leverages constraint learning to train a neural network as surrogate of ADN's ***,it introduces Synthetic Minority Oversampling Technique to generate infeasible samples to mitigate imbalance of historical *** incorporating historical and synthetic samples into the training set,we can significantly improve accuracy of neural ***,we establish a trust region to constrain and thereafter enhance reliability of the *** confirm the benefits of the proposed method in achieving desirable optimality and feasibility while maintaining low computational complexity.
In this paper, problem of secure message (signal and image) transmission is studied. The message is encrypted by masking it with a chaotic system state and then transmitted to receiver-side via a communication channel...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
Artificial intelligence (AI) is revolutionizing various sectors, including science,technology, industry and daily life [1,2].One key area where AI can make a significant impact is in material design, crucial for advan...
Artificial intelligence (AI) is revolutionizing various sectors, including science,technology, industry and daily life [1,2].One key area where AI can make a significant impact is in material design, crucial for advancing technologies such as energy storage and catalysis [3,4].
Rate-splitting multiple access(RSMA) has recently gained attention as a potential robust multiple access(MA)scheme for upcoming wireless networks. Given its ability to efficiently utilize wireless resources and design...
详细信息
Rate-splitting multiple access(RSMA) has recently gained attention as a potential robust multiple access(MA)scheme for upcoming wireless networks. Given its ability to efficiently utilize wireless resources and design interference management strategies, it can be applied to unmanned aerial vehicle(UAV) networks to provide convenient services for large-scale access ground users. However, due to the line-of-sight(LoS) broadcast nature of UAV transmission, information is susceptible to eavesdropping in RSMA-based UAV networks. Moreover, the superposition of signals at the receiver in such networks becomes complicated. To cope with the challenge, we propose a two-user multi-input single-output(MISO) RSMA-based UAV secure transmission framework in downlink communication networks. In a passive eavesdropping scenario, our goal is to maximize the sum secrecy rate by optimizing the transmit beamforming and deployment location of the UAV-base station(UAV-BS),while considering quality-of-service(QoS) constraints, maximum transmit power, and flight space limitations. To address the non-convexity of the proposed problem, the optimization problem is first decoupled into two subproblems. Then, the successive convex approximation(SCA) method is employed to solve each subproblem using different propositions. In addition, an alternating optimization(AO)-based location RSMA(L-RSMA) beamforming algorithm is developed to implement joint optimization to obtain the suboptimal solution. Numerical results demonstrate that(1) the proposed L-RSMA scheme yields a28.97% higher sum secrecy rate than the baseline L-space division multiple access(SDMA) scheme;(2) the proposed L-RSMA scheme improves the security performance by 42.61% compared to the L-non-orthogonal multiple access(NOMA) scheme.
暂无评论