咨询与建议

限定检索结果

文献类型

  • 205 篇 期刊文献
  • 126 篇 会议

馆藏范围

  • 331 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 237 篇 工学
    • 153 篇 计算机科学与技术...
    • 131 篇 软件工程
    • 44 篇 信息与通信工程
    • 42 篇 控制科学与工程
    • 31 篇 电子科学与技术(可...
    • 29 篇 电气工程
    • 29 篇 生物工程
    • 28 篇 光学工程
    • 27 篇 机械工程
    • 22 篇 生物医学工程(可授...
    • 20 篇 交通运输工程
    • 14 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
    • 6 篇 网络空间安全
  • 147 篇 理学
    • 73 篇 数学
    • 33 篇 物理学
    • 32 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 11 篇 化学
  • 49 篇 管理学
    • 30 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 17 篇 医学
    • 14 篇 临床医学
    • 13 篇 药学(可授医学、理...
    • 12 篇 基础医学(可授医学...
  • 11 篇 法学
    • 11 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 3 篇 经济学
  • 2 篇 艺术学

主题

  • 10 篇 semantics
  • 10 篇 feature extracti...
  • 9 篇 machine learning
  • 8 篇 graph neural net...
  • 8 篇 microcontrollers
  • 6 篇 data models
  • 5 篇 task analysis
  • 5 篇 generative adver...
  • 5 篇 contrastive lear...
  • 5 篇 topology
  • 5 篇 synchronization
  • 5 篇 training
  • 4 篇 internet of thin...
  • 4 篇 reinforcement le...
  • 4 篇 semantic segment...
  • 4 篇 graph database
  • 4 篇 deep learning
  • 4 篇 spintronics
  • 3 篇 galaxies
  • 3 篇 three-dimensiona...

机构

  • 88 篇 beijing advanced...
  • 29 篇 beijing advanced...
  • 19 篇 key laboratory o...
  • 18 篇 guangdong key la...
  • 17 篇 state key labora...
  • 15 篇 peng cheng labor...
  • 13 篇 school of comput...
  • 10 篇 school of data a...
  • 9 篇 school of comput...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 shandong dongyi ...
  • 8 篇 national enginee...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of econom...
  • 7 篇 state key labora...
  • 7 篇 school of automa...
  • 6 篇 state key labora...
  • 6 篇 state key labora...

作者

  • 16 篇 li jianxin
  • 13 篇 qingdong li
  • 13 篇 xiwang dong
  • 12 篇 zhang ren
  • 10 篇 peng hao
  • 10 篇 tian daxin
  • 9 篇 zhang fan
  • 8 篇 xiao yongguang
  • 8 篇 zhang xiaoqiang
  • 8 篇 jiang yunqing
  • 8 篇 zhao zhenyang
  • 8 篇 xu yong
  • 8 篇 liu fengguang
  • 8 篇 li hongqing
  • 8 篇 zhao weisheng
  • 8 篇 wei wei
  • 8 篇 tang minghua
  • 8 篇 feng xiangnan
  • 7 篇 zheng zhiming
  • 7 篇 su qinliang

语言

  • 304 篇 英文
  • 19 篇 其他
  • 10 篇 中文
检索条件"机构=Advanced Computing and Big Data Laboratory"
331 条 记 录,以下是171-180 订阅
排序:
Embedding dynamic attributed networks by modeling the evolution processes
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Ou, Zijing Su, Qinliang Yu, Jianxing Quan, Xiaojun Lin, Zhenkun School of Data and Computer Science Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
Network embedding has recently emerged as a promising technique to embed nodes of a network into low-dimensional vectors. While fairly successful, most existing works focus on the embedding techniques for static netwo... 详细信息
来源: 评论
Understanding collective behaviors in reinforcement learning evolutionary games via a belief-based formalization
收藏 引用
Physical Review E 2020年 第4期101卷 042402-042402页
作者: Ji-Qiang Zhang Si-Ping Zhang Li Chen Xu-Dong Liu Beijing Advanced Innovation Center for Big Data and Brain Computing School of Comuter Science and Engineering Beihang University Beijing 100191 China The Key Laboratory of Biomedical Information Engineering of Ministry of Education The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs and Institute of Health and Rehabilitation Science School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China School of Physics and Information Technology Shaanxi Normal University Xi'an 710062 China Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing 100191 China
Collective behaviors by self-organization are ubiquitous in nature and human society and extensive efforts have been made to explore the mechanisms behind them. Artificial intelligence (AI) as a rapidly developing fie... 详细信息
来源: 评论
Hyperbolic variational graph neural network for modeling dynamic graphs
arXiv
收藏 引用
arXiv 2021年
作者: Sun, Li Zhang, Zhongbao Zhang, Jiawei Wang, Feiyang Peng, Hao Su, Sen Yu, Philip S. State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications China IFM Lab Department of Computer Science Florida State University FL United States Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China Department of Computer Science University of Illinois ChicagoIL United States
Learning representations for graphs plays a critical role in a wide spectrum of downstream applications. In this paper, we summarize the limitations of the prior works in three folds: representation space, modeling dy... 详细信息
来源: 评论
Signal approximation with Pascal’s triangle and sampling
Signal approximation with Pascal’s triangle and sampling
收藏 引用
第32届中国控制与决策会议
作者: Lei Chen Xinghuo Yu Jinhu Lü School of Automation Science and Electrical Engineering State Key Laboratory of Software Development EnvironmentBeijing Advanced Innovation Center for Big Data and Brain ComputingBeihang University School of Engineering RMIT University
This brief explores the approximation properties of a unique basis expansion based on Pascal’s triangle,which realizes a sampled-data driven approach between a continuous-time signal and its discrete-time *** roles o... 详细信息
来源: 评论
Graph classification based on skeleton and component features
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xue Wei, Wei Feng, Xiangnan Cao, Xiaobo Sun, Dan Beijing System Design Institute of Electro-Mechanic Engineering Beijing100854 China School of Mathematical Sciences Beihang University Beijing100191 China Key Laboratory of Mathematics Informatics and Behavioral Semantics Ministry of Education 100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Peng Cheng Laboratory Shenzhen Guangdong518066 China
Most existing popular methods for learning graph embedding only consider fixed-order global structural features and lack structures hierarchical representation. To address this weakness, we propose a novel graph embed... 详细信息
来源: 评论
An Anomaly Pattern Detection Method for Sensor data  16th
An Anomaly Pattern Detection Method for Sensor Data
收藏 引用
16th Web Information Systems and Applications Conference, WISA 2019
作者: Li, Han Yu, Bin Zhao, Ting College of Computer Science North China University of Technology Beijing China Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data Beijing China Advanced Computing and Big Data Technology Laboratory of SGCC Global Energy Interconnection Research Institute Beijing China
With the development of the Internet of Things (IOT) technology, a large number of sensor data have been produced. Due to the complex acquisition environment and transmission condition, anomalies are prevalent. Sensor... 详细信息
来源: 评论
Manipulating density of magnetic skyrmions via multilayer repetition and thermal annealing
收藏 引用
Physical Review B 2021年 第6期104卷 064421-064421页
作者: Xinran Wang Anni Cao Sai Li Jin Tang Ao Du Houyi Cheng Yiming Sun Haifeng Du Xueying Zhang Weisheng Zhao Fert Beijing Institute School of Integrated Circuit Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing 100191 China Beihang-Goertek Joint Microelectronics Institute Qingdao Research Institute Beihang University Qingdao 266000 China Beijing Microelectronics Technology Institute Beijing 100076 China Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory of Chinese Academy of Sciences and University of Science and Technology of China Hefei 230031 China
The magnetic skyrmion, a tiny magnetic texture that holds promise as the next-generation information carrier, has been widely studied in recent years. A fine tunability of skyrmion density is required for its real app... 详细信息
来源: 评论
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Cross-domain Object Detection through Coarse-to-Fine Feature...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yangtao Zheng Di Huang Songtao Liu Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing China
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop.... 详细信息
来源: 评论
Representation Learning of Graphs Using Graph Convolutional Multilayer Networks Based on Motifs
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xing Wei, Wei Feng, Xiangnan Liu, Xue Zheng, Zhiming School of Mathematical Science Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China Peng Cheng Laboratory Shenzhen Guangdong China and Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China School of Mathematical Science Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China and Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
The graph structure is a commonly used data storage mode, and it turns out that the low-dimensional embedded representation of nodes in the graph is extremely useful in various typical tasks, such as node classificati... 详细信息
来源: 评论
Cross-domain object detection through coarse-to-fine feature adaptation
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Yangtao Huang, Di Liu, Songtao Wang, Yunhong Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing100191 China
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop.... 详细信息
来源: 评论