咨询与建议

限定检索结果

文献类型

  • 205 篇 期刊文献
  • 125 篇 会议

馆藏范围

  • 330 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 154 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 44 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 31 篇 电子科学与技术(可...
    • 29 篇 电气工程
    • 29 篇 生物工程
    • 28 篇 光学工程
    • 27 篇 机械工程
    • 22 篇 生物医学工程(可授...
    • 20 篇 交通运输工程
    • 14 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
    • 6 篇 网络空间安全
  • 148 篇 理学
    • 73 篇 数学
    • 34 篇 物理学
    • 32 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 11 篇 化学
  • 49 篇 管理学
    • 30 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 17 篇 医学
    • 14 篇 临床医学
    • 13 篇 药学(可授医学、理...
    • 12 篇 基础医学(可授医学...
  • 12 篇 法学
    • 11 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 3 篇 经济学
  • 2 篇 艺术学

主题

  • 10 篇 semantics
  • 9 篇 feature extracti...
  • 8 篇 graph neural net...
  • 8 篇 machine learning
  • 8 篇 microcontrollers
  • 5 篇 task analysis
  • 5 篇 generative adver...
  • 5 篇 contrastive lear...
  • 5 篇 topology
  • 5 篇 synchronization
  • 5 篇 data models
  • 5 篇 training
  • 4 篇 internet of thin...
  • 4 篇 reinforcement le...
  • 4 篇 graph database
  • 4 篇 deep learning
  • 4 篇 spintronics
  • 3 篇 semantic segment...
  • 3 篇 galaxies
  • 3 篇 three-dimensiona...

机构

  • 88 篇 beijing advanced...
  • 29 篇 beijing advanced...
  • 19 篇 key laboratory o...
  • 17 篇 guangdong key la...
  • 17 篇 state key labora...
  • 15 篇 peng cheng labor...
  • 13 篇 school of comput...
  • 10 篇 school of data a...
  • 9 篇 school of comput...
  • 9 篇 national enginee...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of econom...
  • 7 篇 state key labora...
  • 7 篇 school of automa...
  • 6 篇 state key labora...
  • 6 篇 state key labora...

作者

  • 16 篇 li jianxin
  • 13 篇 qingdong li
  • 13 篇 xiwang dong
  • 12 篇 zhang ren
  • 10 篇 peng hao
  • 10 篇 tian daxin
  • 9 篇 zhang fan
  • 8 篇 xiao yongguang
  • 8 篇 zhang xiaoqiang
  • 8 篇 jiang yunqing
  • 8 篇 zhao zhenyang
  • 8 篇 xu yong
  • 8 篇 liu fengguang
  • 8 篇 li hongqing
  • 8 篇 zhao weisheng
  • 8 篇 wei wei
  • 8 篇 tang minghua
  • 8 篇 feng xiangnan
  • 7 篇 zheng zhiming
  • 7 篇 su qinliang

语言

  • 307 篇 英文
  • 15 篇 其他
  • 10 篇 中文
检索条件"机构=Advanced Computing and Big Data Laboratory of SGCC"
330 条 记 录,以下是161-170 订阅
排序:
Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
收藏 引用
IEEE Transactions on Neural Networks and Learning Systems 2024年 第6期36卷 9737-9757页
作者: Yuji Cao Huan Zhao Yuheng Cheng Ting Shu Yue Chen Guolong Liu Gaoqi Liang Junhua Zhao Jinyue Yan Yun Li Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR China Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Hong Kong China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Center for Crowd Intelligence Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China School of Electrical and Electronic Engineering Nanyang Technological University Jurong West Singapore School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen China i4AI Ltd. London U.K.
With extensive pretrained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects, such as multitask learning, sample ... 详细信息
来源: 评论
Incorporating Multiple Features to Predict Bug Fixing Time with Neural Networks
Incorporating Multiple Features to Predict Bug Fixing Time w...
收藏 引用
International Conference on Software Maintenance (ICSM)
作者: Wei Yuan Yuan Xiong Hailong Sun Xudong Liu SKLSDE Lab School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China SKLSDE Lab School of Software Beihang University Beijing China
Debugging is a well-known time-consuming task, and knowing how long it would take to resolve bugs is of great importance for allocating the limited resources in a software development team. However, it is challenging ...
来源: 评论
Deep Active Contour Network for Medical Image Segmentation  23rd
Deep Active Contour Network for Medical Image Segmentation
收藏 引用
23rd International Conference on Medical Image computing and Computer-Assisted Intervention, MICCAI 2020
作者: Zhang, Mo Dong, Bin Li, Quanzheng Center for Data Science Peking University Beijing100871 China Center for Data Science in Health and Medicine Peking University Beijing100871 China Laboratory for Biomedical Image Analysis Beijing Institute of Big Data Research Beijing100871 China Peking University Beijing100871 China Institute for Artificial Intelligence Peking University Beijing100871 China Department of Radiology Center for Advanced Medical Computing and Analysis MGH/BWH Center for Clinical Data Science Massachusetts General Hospital Harvard Medical School BostonMA02115 United States
Image segmentation is vital to medical image analysis and clinical diagnosis. Recently, convolutional neural networks (CNNs) have achieved tremendous success in this task, however, it performs poorly at recognizing pr... 详细信息
来源: 评论
Current switching of the antiferromagnetic Néel vector in Pd/CoO/MgO(001)
收藏 引用
Physical Review B 2022年 第21期106卷 214405-214405页
作者: M. Yang Q. Li T. Wang B. Hong C. Klewe Z. Li X. Huang P. Shafer F. Zhang C. Hwang W. S. Yan R. Ramesh W. S. Zhao Y. Z. Wu Xixiang Zhang Z. Q. Qiu Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 China Department of Physics University of California Berkeley California 94720 USA Fert Beijing Research Institute School of Integrated Circuit Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Advanced Light Source Lawrence Berkeley National Laboratory Berkeley California 94720 USA Department of Materials Science and Engineering University of California Berkeley California 94720 USA Korea Research Institute of Standards and Science Yuseong Daejeon 305-340 Korea Department of Physics State Key Laboratory of Surface Physics Fudan University Shanghai 200433 China Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
Recently, the electrical switching of antiferromagnetic (AFM) order has been intensively investigated because of its application potential in data storage technology. Herein, we report the current switching of the AFM... 详细信息
来源: 评论
Holographic capture and projection system of real object based on tunable zoom lens
收藏 引用
PhotoniX 2020年 第1期1卷 271-285页
作者: Di Wang Chao Liu Chuan Shen Yan Xing Qiong-Hua Wang School of Instrumentation and Optoelectronic Engineering Beihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data-based Precision Medicine Beihang UniversityBeijing 100191China Key Laboratory of Intelligent Computing&Signal Processing Ministry of EducationAnhui UniversityHefei 230039China.
In this paper, we propose a holographic capture and projection system of real objectsbased on tunable zoom lenses. Different from the traditional holographic system, aliquid lens-based zoom camera and a digital conica... 详细信息
来源: 评论
Wireless Acoustic Sensor Networks and Edge computing for Rapid Acoustic Monitoring
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 64-74页
作者: Zhengguo Sheng Saskia Pfersich Alice Eldridge Jianshan Zhou Daxin Tian Victor C.M.Leung the Department of Engineering and Design University of Sussex Infineon Technologies AG the Department of Music University of Sussex Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems & Safety ControlSchool of Transportation Science and EngineeringBeihang University the Department of Electrical and Computer Engineering The University of British Columbia
Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the afford... 详细信息
来源: 评论
STRATLEARN-Z: IMPROVED PHOTO-Z ESTIMATION FROM SPECTROSCOPIC data SUBJECT TO SELECTION EFFECTS
arXiv
收藏 引用
arXiv 2024年
作者: Moretti, Chiara Autenrieth, Maximilian Serra, Riccardo Trotta, Roberto van Dyk, David A. Mesinger, Andrei SISSA - International School for Advanced Studies Via Bonomea 265 Trieste34136 Italy Centro Nazionale "High Performance Computer Big Data and Quantum Computing" INAF – Osservatorio Astronomico di Trieste Via Tiepolo 11 TriesteI-34143 Italy INFN sezione di Trieste Italy Statistic Section Department of Mathematics Imperial College London 180 Queen’s Gate LondonSW7 2AZ United Kingdom Department of Physics Imperial College London Blackett Laboratory Prince Consort Rd LondonSW7 2AZ United Kingdom Piazza dei Cavalieri 7 PI Pisa56125 Italy
A precise measurement of photometric redshifts (photo-z) is crucial for the success of modern photometric galaxy surveys. Machine learning (ML) methods show great promise in this context, but suffer from covariate shi... 详细信息
来源: 评论
Embedding dynamic attributed networks by modeling the evolution processes
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Ou, Zijing Su, Qinliang Yu, Jianxing Quan, Xiaojun Lin, Zhenkun School of Data and Computer Science Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
Network embedding has recently emerged as a promising technique to embed nodes of a network into low-dimensional vectors. While fairly successful, most existing works focus on the embedding techniques for static netwo... 详细信息
来源: 评论
Understanding collective behaviors in reinforcement learning evolutionary games via a belief-based formalization
收藏 引用
Physical Review E 2020年 第4期101卷 042402-042402页
作者: Ji-Qiang Zhang Si-Ping Zhang Li Chen Xu-Dong Liu Beijing Advanced Innovation Center for Big Data and Brain Computing School of Comuter Science and Engineering Beihang University Beijing 100191 China The Key Laboratory of Biomedical Information Engineering of Ministry of Education The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs and Institute of Health and Rehabilitation Science School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China School of Physics and Information Technology Shaanxi Normal University Xi'an 710062 China Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing 100191 China
Collective behaviors by self-organization are ubiquitous in nature and human society and extensive efforts have been made to explore the mechanisms behind them. Artificial intelligence (AI) as a rapidly developing fie... 详细信息
来源: 评论
Hyperbolic variational graph neural network for modeling dynamic graphs
arXiv
收藏 引用
arXiv 2021年
作者: Sun, Li Zhang, Zhongbao Zhang, Jiawei Wang, Feiyang Peng, Hao Su, Sen Yu, Philip S. State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications China IFM Lab Department of Computer Science Florida State University FL United States Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China Department of Computer Science University of Illinois ChicagoIL United States
Learning representations for graphs plays a critical role in a wide spectrum of downstream applications. In this paper, we summarize the limitations of the prior works in three folds: representation space, modeling dy... 详细信息
来源: 评论