咨询与建议

限定检索结果

文献类型

  • 1,362 篇 期刊文献
  • 788 篇 会议
  • 8 册 图书

馆藏范围

  • 2,158 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,338 篇 工学
    • 608 篇 计算机科学与技术...
    • 489 篇 软件工程
    • 222 篇 电子科学与技术(可...
    • 219 篇 电气工程
    • 218 篇 光学工程
    • 194 篇 信息与通信工程
    • 175 篇 材料科学与工程(可...
    • 174 篇 生物医学工程(可授...
    • 156 篇 化学工程与技术
    • 149 篇 生物工程
    • 136 篇 控制科学与工程
    • 108 篇 仪器科学与技术
    • 87 篇 机械工程
    • 71 篇 动力工程及工程热...
    • 61 篇 航空宇航科学与技...
    • 60 篇 冶金工程
    • 54 篇 力学(可授工学、理...
  • 1,091 篇 理学
    • 666 篇 物理学
    • 311 篇 数学
    • 169 篇 生物学
    • 152 篇 化学
    • 122 篇 统计学(可授理学、...
    • 118 篇 地球物理学
    • 50 篇 系统科学
  • 226 篇 管理学
    • 144 篇 管理科学与工程(可...
    • 77 篇 图书情报与档案管...
    • 65 篇 工商管理
  • 175 篇 医学
    • 147 篇 临床医学
    • 117 篇 基础医学(可授医学...
    • 72 篇 药学(可授医学、理...
  • 26 篇 法学
  • 26 篇 农学
  • 23 篇 经济学
  • 20 篇 教育学
  • 4 篇 军事学
  • 3 篇 艺术学
  • 2 篇 哲学
  • 2 篇 文学
  • 1 篇 历史学

主题

  • 38 篇 feature extracti...
  • 34 篇 deep learning
  • 31 篇 machine learning
  • 30 篇 image segmentati...
  • 30 篇 computational mo...
  • 30 篇 training
  • 29 篇 gamma rays
  • 28 篇 cosmic rays
  • 27 篇 accuracy
  • 25 篇 predictive model...
  • 22 篇 nuclear structur...
  • 16 篇 semantics
  • 16 篇 humans
  • 16 篇 artificial intel...
  • 16 篇 data models
  • 15 篇 cameras
  • 14 篇 forecasting
  • 13 篇 testing
  • 13 篇 robustness
  • 12 篇 magnetic resonan...

机构

  • 119 篇 university of ch...
  • 103 篇 university of sc...
  • 96 篇 hebei normal uni...
  • 95 篇 tianfu cosmic ra...
  • 93 篇 state key labora...
  • 89 篇 yunnan observato...
  • 86 篇 department of ph...
  • 76 篇 school of physic...
  • 75 篇 key laboratory f...
  • 74 篇 center for astro...
  • 67 篇 college of physi...
  • 65 篇 institute of fro...
  • 63 篇 school of physic...
  • 62 篇 school of physic...
  • 60 篇 national astrono...
  • 59 篇 national space s...
  • 58 篇 moscow institute...
  • 54 篇 institute for nu...
  • 54 篇 school of astron...
  • 53 篇 school of physic...

作者

  • 109 篇 bastieri d.
  • 81 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 77 篇 jiang k.
  • 71 篇 kuleshov d.
  • 71 篇 li cheng
  • 70 篇 liu d.
  • 69 篇 chen m.j.
  • 69 篇 liu s.m.
  • 69 篇 huang d.h.
  • 69 篇 dai h.l.
  • 66 篇 guo y.q.
  • 64 篇 li xin
  • 64 篇 liu b.
  • 63 篇 min z.
  • 62 篇 bao y.w.
  • 62 篇 hu h.b.
  • 62 篇 danzengluobu
  • 59 篇 qin j.j.

语言

  • 1,966 篇 英文
  • 161 篇 其他
  • 29 篇 中文
  • 2 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=Advanced Computing and Digital Engineering Research Institute"
2158 条 记 录,以下是391-400 订阅
排序:
An Efficient Three-Factor Authenticated Key Agreement Technique Using FCM Under HC-IoT Architectures
收藏 引用
Computers, Materials & Continua 2022年 第7期72卷 1373-1389页
作者: Chandrashekhar Meshram Agbotiname Lucky Imoize Sajjad Shaukat Jamal Parkash Tambare Adel R.Alharbi Iqtadar Hussain Department of Post Graduate Studies and Research in Mathematics Jayawanti Haksar Government Post-Graduation CollegeCollege of Chhindwara UniversityBetul460001M.P.India Department of Electrical and Electronics Engineering Faculty of EngineeringUniversity of LagosAkokaLagos100213Nigeria Department of Electrical Engineering and Information Technology Institute of Digital CommunicationRuhr University44801BochumGermany Department of Mathematics College of ScienceKing Khalid UniversityAbhaSaudi Arabia Water Resources&Applied Mathematics Research Lab Nagpur440027India College of Computing and Information Technology University of TabukTabuk71491Saudi Arabia Mathematics Program Department of MathematicsStatistics and PhysicsCollege of Arts and SciencesQatar University2713DohaQatar
The Human-Centered Internet of Things(HC-IoT)is fast becoming a hotbed of security and privacy *** users can establish a common session key through a trusted server over an open communication channel using a three-par... 详细信息
来源: 评论
Auto-MatRegressor材料性能自动预测器:解放材料机器学习"调参师"
收藏 引用
Science Bulletin 2023年 第12期68卷 1259-1270,M0004页
作者: 刘悦 王双燕 杨正伟 Maxim Avdeev 施思齐 School of Computer Engineering and Science Shanghai UniversityShanghai 200444China Shanghai Engineering Research Center of Intelligent Computing System Shanghai 200444China State Key Laboratory of Advanced Special Steel School of Materials Science and EngineeringShanghai UniversityShanghai 200444China Materials Genome Institute Shanghai UniversityShanghai 200444China Zhejiang Laboratory Hangzhou 311100China Australian Nuclear Science and Technology Organisation Sydney 2232Australia School of Chemistry The University of SydneySydney 2006Australia
机器学习因其能够快速、精准拟合数据的潜在模式而被广泛应用于材料构效关系研究。然而,材料科学家往往需要进行繁琐的模型选择及参数寻优才能构建出高精度预测模型,为了解放材料机器学习"调参师",本文研发了基于元学习的材... 详细信息
来源: 评论
A Hybrid Loss Network for Localization of Image Manipulation  19th
A Hybrid Loss Network for Localization of Image Manipulation
收藏 引用
19th International Workshop on digital Forensics and Watermarking, IWDW 2020
作者: Yin, Qilin Wang, Jinwei Luo, Xiangyang Nanjing University of Information Science and Technology and Engineering Research Center of Digital Forensics Ministry of Education Nanjing210044 China State Key Laboratory of Mathematical Engineering and Advanced Computing Henan450001 China Shanxi Key Laboratory of Network and System Security Xidian University Xi’an710071 China
With the development of information security, localization of image manipulations havs become a hot topic. In this paper, a hybrid loss network is proposed for the manipulated image forensics. First, the patch predict... 详细信息
来源: 评论
Learning from Noisy Crowd Labels with Logics
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Zhijun Sun, Hailong He, Haoqian Chen, Pengpeng SKLSDE Lab Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China China’s Aviation System Engineering Research Institute Beijing China
This paper explores the integration of symbolic logic knowledge into deep neural networks for learning from noisy crowd labels. We introduce Logic-guided Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iter... 详细信息
来源: 评论
A Swing-Up and Stable Control Strategy for Pendubot Based on Nonlinear Model Predictive Method
A Swing-Up and Stable Control Strategy for Pendubot Based on...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Wang, Lejun Liu, Yiqin Zhang, Ruihuan Huang, Zixin Cai, Zhen School of Automation School of Industrial Internet Chongqing University of Posts and Telecommunications Chongqing400065 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan430074 China Hubei Key Laboratory of Digital Textile Equipment Wuhan Textile University Wuhan430200 China School of Electrical and Information Engineering Wuhan Institute of Technology Wuhan430205 China School of Information Engineering Wuhan City Polytechnic Wuhan430064 China
The control objective of Pendubot is to stabilise the system in a vertically upward position by swinging up from a vertically downward position. Facing various physical constraints in practical applications, this pape... 详细信息
来源: 评论
Learning from Noisy Crowd Labels with Logics
Learning from Noisy Crowd Labels with Logics
收藏 引用
International Conference on Data engineering
作者: Zhijun Chen Hailong Sun Haoqian He Pengpeng Chen SKLSDE Lab Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China China’s Aviation System Engineering Research Institute Beijing China
This paper explores the integration of symbolic logic knowledge into deep neural networks for learning from noisy crowd labels. We introduce Logic-guided Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iter...
来源: 评论
Multi-task Learning Graph Neural Networks for Cancer Prognosis Prediction with Genomic Data
Multi-task Learning Graph Neural Networks for Cancer Prognos...
收藏 引用
Annual International Conference of the IEEE engineering in Medicine and Biology Society (EMBC)
作者: Tsung-Wei Lin Sofia Ormazabal Arriagada Che Lin Graduate Institute of Communication Engineering National Taiwan University (NTU) Taiwan International Graduate Program AIoT NTU Research Center for Information Technology Innovation Academia Sinica Department of Electrical Engineering NTU Center for Advanced Computing and Imaging in Biomedicine NTU Smart Medicine and Health Informatics Program NTU
Providing robust prognosis predictions for cancers with limited data samples remains a challenge for precision oncology. In this study, we propose a novel approach that combines multi-task learning (MTL) and graph neu... 详细信息
来源: 评论
Cross-Domain Multicarrier Waveform Design for Integrated Sensing and Communication
Cross-Domain Multicarrier Waveform Design for Integrated Sen...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Fan Zhang Tianqi Mao Ruiqi Liu Zhu Han Octavia A. Dobre Sheng Chen Zhaocheng Wang Department of Electronic Engineering Tsinghua University Beijing China Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing China Wireless and Computing Research Institute ZTE Corporation Beijing China Department of Electrical and Computer Engineering University of Houston Houston TX USA Faculty of Engineering and Applied Science Memorial University St. John's NL Canada School of Electronics and Computer Science University of Southampton Southampton U.K.
Integrated sensing and communication (ISAC) is expected to be a promising technology in the sixth-generation (6G) wireless networks for its ability to alleviate resources shortage and excessive hardware expenses. One ... 详细信息
来源: 评论
CL4KGE: A Curriculum Learning Method for Knowledge Graph Embedding
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yang Zhou, Chuan Zhang, Peng Cao, Yanan Liu, Yongchao Li, Zhao Chen, Hongyang Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou China Institute of Information Engineering Chinese Academy of Sciences Beijing China Ant Group Hangzhou China Research Center for Graph Computing Zhejiang Lab Hangzhou China
Knowledge graph embedding (KGE) constitutes a foundational task, directed towards learning representations for entities and relations within knowledge graphs (KGs), with the objective of crafting representations compr... 详细信息
来源: 评论
PreZ-DGGAN: A Drug Graph GAN Based on Pre-Learning of Implicit Variables  2nd
PreZ-DGGAN: A Drug Graph GAN Based on Pre-Learning of Implic...
收藏 引用
2nd International Conference on Applied Intelligence, ICAI 2024
作者: Liu, Yixin Fan, Yueqin Li, Zhipeng Zhang, Qinhu Big Data and Intelligent Computing Research Center Guangxi Academy of Science Nanning530007 China School of Mechanical Engineering Guangxi University Nanning530004 China Ningbo Institute of Digital Twin Eastern Institute of Technology Ningbo315201 China Institute for Regenerative Medicine Medical Innovation Center and State Key Laboratory of Cardiology School of Medicine Shanghai East Hospital Tongji University Shanghai200123 China College of Advanced Agricultural Sciences Zhejiang Agriculture and Forestry University Hangzhou311300 China
In the field of drug discovery and development, deep learning techniques have become a powerful tool to accelerate the discovery and development of new drugs. In the design and optimization of lead molecules, generati... 详细信息
来源: 评论