咨询与建议

限定检索结果

文献类型

  • 380 篇 期刊文献
  • 212 篇 会议
  • 3 册 图书

馆藏范围

  • 595 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 186 篇 计算机科学与技术...
    • 148 篇 软件工程
    • 85 篇 信息与通信工程
    • 84 篇 电气工程
    • 74 篇 电子科学与技术(可...
    • 52 篇 光学工程
    • 46 篇 控制科学与工程
    • 29 篇 材料科学与工程(可...
    • 26 篇 生物医学工程(可授...
    • 26 篇 生物工程
    • 20 篇 动力工程及工程热...
    • 19 篇 机械工程
    • 17 篇 化学工程与技术
    • 15 篇 仪器科学与技术
    • 13 篇 力学(可授工学、理...
    • 10 篇 核科学与技术
    • 9 篇 网络空间安全
  • 274 篇 理学
    • 159 篇 物理学
    • 82 篇 数学
    • 32 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 25 篇 化学
    • 23 篇 系统科学
  • 58 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 22 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 28 篇 医学
    • 22 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 7 篇 法学
  • 5 篇 教育学
  • 5 篇 农学

主题

  • 13 篇 information syst...
  • 12 篇 laboratories
  • 12 篇 machine learning
  • 11 篇 reinforcement le...
  • 11 篇 simulation
  • 11 篇 metamaterials
  • 11 篇 training
  • 10 篇 stimulated emiss...
  • 9 篇 plasmonics
  • 9 篇 computer network...
  • 9 篇 virtual machinin...
  • 8 篇 semiconductor op...
  • 8 篇 computer archite...
  • 8 篇 computational mo...
  • 8 篇 distributed comp...
  • 8 篇 optical sensors
  • 7 篇 deep learning
  • 7 篇 transistors
  • 7 篇 grid computing
  • 7 篇 artificial neura...

机构

  • 33 篇 department of ph...
  • 33 篇 faculty of scien...
  • 33 篇 departamento de ...
  • 33 篇 department for p...
  • 33 篇 department of ph...
  • 33 篇 dipartimento di ...
  • 33 篇 yerevan physics ...
  • 33 篇 institute of phy...
  • 33 篇 institute of phy...
  • 32 篇 lehrstuhl für ex...
  • 32 篇 west university ...
  • 32 篇 kirchhoff-instit...
  • 32 篇 graduate school ...
  • 32 篇 tomsk state univ...
  • 31 篇 department of mo...
  • 31 篇 research center ...
  • 31 篇 fakultät für phy...
  • 31 篇 physikalisches i...
  • 30 篇 faculté des scie...
  • 30 篇 department of ph...

作者

  • 38 篇 malin premaratne
  • 25 篇 f. buehrer
  • 25 篇 m. khader
  • 25 篇 a. t. law
  • 25 篇 c. alexa
  • 25 篇 j. d. mansour
  • 25 篇 j. m. izen
  • 25 篇 s. veneziano
  • 25 篇 d. di valentino
  • 25 篇 g. bella
  • 25 篇 j. strandberg
  • 25 篇 d. calvet
  • 25 篇 c. amelung
  • 25 篇 a. grummer
  • 25 篇 k. j. r. cormier
  • 25 篇 n. orlando
  • 25 篇 c. gumpert
  • 25 篇 f. a. förster
  • 25 篇 h. a. gordon
  • 25 篇 y. tayalati

语言

  • 497 篇 英文
  • 87 篇 其他
  • 12 篇 中文
检索条件"机构=Advanced Computing and Information Systems Laboratory Electrical and Computer Engineering"
595 条 记 录,以下是141-150 订阅
Sliding Mode Control of the PUMA 560 Robot
Sliding Mode Control of the PUMA 560 Robot
收藏 引用
International Conference on Control, Automation and Diagnosis (ICCAD)
作者: Arezki Fekik Ahmad Taher Azar Mohamed Lamine Hamida Hakim Denoun Dyhia Kais Sabrina Mohand Saidi Amar Bousbaine Nashwa Ahmad Kamal Ammar K. Al Mhdawi Chakib Ben Njima Department of Electrical Engineering University Akli Mohand Oulhadj-Bouria Bouira Algeria Electrical Engineering Advanced Technology Laboratory (LATAGE) Algeria Automated Systems & Soft Computing Lab (ASSCL) Prince Sultan University Riyadh Saudi Arabia College of Computer & Information Sciences Prince Sultan University Riyadh Saudi Arabia Faculty of Computers and Artificial Intelligence Benha University Egypt Department of Electrical Engineering L2CSP Laboratory Mouloud Mammeri University Algeria University of Derby College of Science and Engineering UK Faculty of Engineering Cairo University Giza Egypt Edge Hill University U.K University of Sousse Tunisia
The purpose of this article is to present the application of the sliding mode control and investigate its effectiveness when applied to a three-dimensional robotic manipulator model. The analysis is based on the appli...
来源: 评论
Efficient Low-Resolution Face Recognition via Bridge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Ge, Shiming Zhao, Shengwei Li, Chenyu Zhang, Yu Li, Jia The Institute of Information Engineering Chinese Academy of Sciences Beijing100095 China School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China SenseTime Group Limited 100084 China The State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China The Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China The Peng Cheng Laboratory Shenzhen518055 China
Face recognition in the wild is now advancing towards light-weight models, fast inference speed and resolution-adapted capability. In this paper, we propose a bridge distillation approach to turn a complex face model ... 详细信息
来源: 评论
A Survey on Indoor Visible Light Positioning systems: Fundamentals, Applications, and Challenges
arXiv
收藏 引用
arXiv 2024年
作者: Zhu, Zhiyu Yang, Yang Chen, Mingzhe Guo, Caili Cheng, Julian Cui, Shuguang The Beijing Key Laboratory of Network System Architecture and Convergence School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China The Department of Electrical and Computer Engineering Institute for Data Science and Computing University of Miami Coral GablesFL33146 United States The Beijing Laboratory of Advanced Information Networks School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China The Faculty of Applied Science School of Engineering The University of British Columbia KelownaBCV1V 1V7 Canada The Chinese University of Hong Kong Shenzhen518172 China
The growing demand for location-based services in areas like virtual reality, robot control, and navigation has intensified the focus on indoor localization. Visible light positioning (VLP), leveraging visible light c... 详细信息
来源: 评论
Evidence-Aware Multi-Modal Data Fusion and its Application to Total Knee Replacement Prediction
Evidence-Aware Multi-Modal Data Fusion and its Application t...
收藏 引用
Proceedings of the Digital Image computing: Technqiues and Applications (DICTA)
作者: Xinwen Liu Jing Wang S. Kevin Zhou Craig Engstrom Shekhar S. Chandra School of Electrical Engineering and Computer Science The University of Queensland Brisbane Australia The Commonwealth Scientific and Industrial Research Organisation Canberra Australia Center for Medical Imaging Robotics Analytic Computing & Learning (MIRACLE) School of Biomedical Engineering & Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
Deep neural networks have been widely studied to predict a medical condition, such as total knee replacement (TKR). It has shown that data of different modalities, such as imaging data, clinical variables, and demogra... 详细信息
来源: 评论
Neural multi-objective combinatorial optimization with diversity enhancement  23
Neural multi-objective combinatorial optimization with diver...
收藏 引用
Proceedings of the 37th International Conference on Neural information Processing systems
作者: Jinbiao Chen Zizhen Zhang Zhiguang Cao Yaoxin Wu Yining Ma Te Ye Jiahai Wang School of Computer Science and Engineering Sun Yat-sen University P.R. China School of Computing and Information Systems Singapore Management University Singapore Department of Industrial Engineering & Innovation Sciences Eindhoven University of Technology Netherlands Department of Industrial Systems Engineering & Management National University of Singapore Singapore School of Computer Science and Engineering Sun Yat-sen University P.R. China and Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University P.R. China and Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou P.R. China
Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Par...
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Wireless Hallucination in Generative AI-enabled Communications: Concepts, Issues, and Solutions
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xudong Wang, Jiacheng Feng, Lei Niyato, Dusit Zhang, Ruichen Kang, Jiawen Xiong, Zehui Du, Hongyang Mao, Shiwen State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China College of Computing and Data Science Nanyang Technological University Singapore School of Automation Guangdong University of Technology Guangzhou510006 China Pillar of Information Systems Technology and Design Singapore University of Technology and Design Singapore Department of Electrical and Electronic Engineering University of Hong Kong Pok Fu Lam Hong Kong Department of Electrical and Computer Engineering Auburn University Auburn United States
Generative AI (GenAI) is driving the intelligence of wireless communications. Due to data limitations, random generation, and dynamic environments, GenAI may generate channel information or optimization strategies tha... 详细信息
来源: 评论
Federated Edge Learning via Integrated Sensing, Computation, and Communication
Federated Edge Learning via Integrated Sensing, Computation,...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Peixi Liu Guangxu Zhu Shuai Wang Miaowen Wen Wu Luo H. Vincent Poor Shuguang Cui State Key Laboratory of Advanced Optical Communication Systems and Networks Peking University Shenzhen Research Institute of Big Data Chinese Academy of Sciences Shenzhen Institute of Advanced Technology School of Electronic and Information Engineering South China University of Technology Department of Electrical and Computer Engineering Princeton University the Guangdong Provincial Key Laboratory of Future Networks of Intelligence School of Science and Engineering (SSE) Future Network of Intelligence Institute (FNii) the Chinese University of Hong Kong Shenzhen
Sensing, computation, and communication (SC 2 ) are highly coupled processes in federated edge learning (FEEL) and need to be jointly designed in a task-oriented manner for pursuing the best FEEL performance under the...
来源: 评论
Block-Wise Index Modulation and Receiver Design for High-Mobility OTFS Communications
arXiv
收藏 引用
arXiv 2023年
作者: Qian, Mi Ji, Fei Ge, Yao Wen, Miaowen Cheng, Xiang Poor, H. Vincent The School of Electronic and Information Engineering South China University of Technology Guangzhou510641 China The Continental-NTU Corporate Lab Nanyang Technological University Singapore The State Key Laboratory of Advanced Optical Communication Systems and Networks Department of Electronics School of Electronics Engineering and Computer Science Peking University Beijing100871 China The Department of Electrical and Computer Engineering Princeton University PrincetonNJ08544 United States
As a promising technique for high-mobility wireless communications, orthogonal time frequency space (OTFS) has been proved to enjoy excellent advantages with respect to traditional orthogonal frequency division multip... 详细信息
来源: 评论
Real-time deep learning design tool for far-field radiation profile
收藏 引用
Photonics Research 2021年 第4期9卷 I0024-I0028页
作者: Jinran Qie Erfan Khoram Dianjing Liu Ming Zhou Li Gao Department of Electrical and Systems Engineering Washington UniversitySt LouisMissouri 63130USA Department of Electrical and Computer Engineering University of WisconsinMadisonWisconsin 53706USA Key Laboratory for Organic Electronics&Information Displays(KLOEID) Institute of Advanced Materials(IAM)and School of Materials Science and EngineeringNanjing University of Posts&TelecommunicationsNanjing 210046China
The connection between Maxwell’s equations and artificial neural networks has revolutionized the capability and efficiency of nanophotonic *** a machine learning tool can help designers avoid iterative,time-consuming... 详细信息
来源: 评论