咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 19 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 9 篇 生物工程
    • 4 篇 信息与通信工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 安全科学与工程
  • 18 篇 理学
    • 10 篇 生物学
    • 7 篇 数学
    • 6 篇 物理学
    • 3 篇 系统科学
    • 2 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 2 篇 human computer i...
  • 2 篇 transfer learnin...
  • 2 篇 neural networks
  • 2 篇 training
  • 1 篇 learning systems
  • 1 篇 scalability
  • 1 篇 natural language...
  • 1 篇 neurons
  • 1 篇 model ranking
  • 1 篇 semantic segment...
  • 1 篇 deep learning
  • 1 篇 statistical phys...
  • 1 篇 human-machine in...
  • 1 篇 signal processin...
  • 1 篇 model tuning
  • 1 篇 bioelectronics
  • 1 篇 spiking neural n...
  • 1 篇 travel time

机构

  • 8 篇 advanced computi...
  • 7 篇 advanced computi...
  • 6 篇 institute of aut...
  • 4 篇 school of softwa...
  • 4 篇 department of pr...
  • 3 篇 laboratory of ad...
  • 3 篇 peng cheng labor...
  • 2 篇 huawei technolog...
  • 2 篇 school of comput...
  • 2 篇 language & speec...
  • 2 篇 school of artifi...
  • 2 篇 peking universit...
  • 2 篇 huawei technolog...
  • 2 篇 the advanced com...
  • 2 篇 school of vehicl...
  • 2 篇 department of ps...
  • 2 篇 school of artifi...
  • 2 篇 southern univers...
  • 1 篇 huawei technolog...
  • 1 篇 school of chemis...

作者

  • 16 篇 zhang ziyang
  • 10 篇 wang yaoyuan
  • 8 篇 liao jianxing
  • 6 篇 guo qinghai
  • 6 篇 ziyang zhang
  • 5 篇 leng luziwei
  • 5 篇 cheng ran
  • 5 篇 he weihua
  • 4 篇 tian yang
  • 4 篇 you kaichao
  • 4 篇 li guoqi
  • 3 篇 yaoyuan wang
  • 3 篇 guoqi li
  • 3 篇 sun pei
  • 2 篇 wang jianmin
  • 2 篇 he guohang
  • 2 篇 minglei li
  • 2 篇 kaichao you
  • 2 篇 zhang hu
  • 2 篇 jia xu

语言

  • 29 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Advanced Computing and Storage Lab"
31 条 记 录,以下是21-30 订阅
排序:
Inherent Redundancy in Spiking Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Yao, Man Hu, Jiakui Zhao, Guangshe Wang, Yaoyuan Zhang, Ziyang Xu, Bo Li, Guoqi School of Automation Science and Engineering Xi'an Jiaotong University Xi’an China Institute of Automation Chinese Academy of Sciences Beijing China Peng Cheng Laboratory Shenzhen China Peking University Health Science Center Peking University Beijing China Advanced Computing and Storage Lab Huawei Technologies Co Ltd China
Spiking Neural Networks (SNNs) are well known as a promising energy-efficient alternative to conventional artificial neural networks. Subject to the preconceived impression that SNNs are sparse firing, the analysis an... 详细信息
来源: 评论
Audio-Driven High Definetion and Lip-Synchronized Talking Face Generation Based on Face Reenactment
Audio-Driven High Definetion and Lip-Synchronized Talking Fa...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xianyu Wang Yuhan Zhang Weihua He Yaoyuan Wang Minglei Li Yuchen Wang Jingyi Zhang Shunbo Zhou Ziyang Zhang Advanced Computing and Storage Lab Huawei Technologies Co. Ltd. China Language & Speech Innovation Lab Huawei Technologies Co. Ltd. China NCE Dept. Huawei Technologies Co. Ltd. China Ascend Lab Huawei Technologies Co. Ltd. China Edge Cloud Innovation Lab Huawei Technologies Co. Ltd. China
Generating audio-driven photo-realistic talking face has received intensive attention due to its ability to bring more new human-computer interaction experiences. However, previous works struggled to balance high defi... 详细信息
来源: 评论
Inherent Redundancy in Spiking Neural Networks
Inherent Redundancy in Spiking Neural Networks
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Man Yao Jiakui Hu Guangshe Zhao Yaoyuan Wang Ziyang Zhang Bo Xu Guoqi Li School of Automation Science and Engineering Xi’an Jiaotong University Xi’an China Institute of Automation Chinese Academy of Sciences Beijing China Peng Cheng Laboratory Shenzhen China Peking University Health Science Center Peking University Beijing China Advanced Computing and Storage Lab Huawei Technologies Co. Ltd.
Spiking Neural Networks (SNNs) are well known as a promising energy-efficient alternative to conventional artificial neural networks. Subject to the preconceived impression that SNNs are sparse firing, the analysis an...
来源: 评论
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
arXiv
收藏 引用
arXiv 2022年
作者: Weng, Kangyu Cheng, Aohua Zhang, Ziyang Sun, Pei Tian, Yang Tsien Excellence in Engineering Program Xingjian College Tsinghua University Beijing100084 China Laboratory of Advanced Computing and Storage Central Research Institute 2012 Laboratories Huawei Technologies Co. Ltd. Beijing100084 China Department of Psychology & Tsinghua Brain and Intelligence Lab Tsinghua University Beijing100084 China
In deep learning, neural networks serve as noisy channels between input data and its representation. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal performance ... 详细信息
来源: 评论
MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Xiaoshan He, Weihua Yao, Man Zhang, Ziyang Wang, Yaoyuan Li, Guoqi ZJU-UIUC Institute Zhejiang University Zhejiang Haining China Department of Precision Instrument Tsinghua University Beijing China School of Automation Science and Engineering Xi'an Jiaotong University Shaanxi Xi'An China Advanced Computing and Storage Lab Huawei Technologies Co. Ltd Beijing China Institute of Automation Chinese Academy of Sciences Beijing China
Event cameras are considered to have great potential for computer vision and robotics applications because of their high temporal resolution and low power consumption characteristics. However, the event streams output... 详细信息
来源: 评论
Accurate and Efficient Event-based Semantic Segmentation Using Adaptive Spiking Encoder-Decoder Network
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Rui Leng, Luziwei Che, Kaiwei Zhang, Hu Cheng, Jie Guo, Qinghai Liao, Jianxing Cheng, Ran Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen518055 China ACSLab Huawei Technologies Co. Ltd China Advanced Computing and Storage Lab Huawei Technologies Co. Ltd. Shenzhen518055 China
Spiking neural networks (SNNs), known for their low-power, event-driven computation and intrinsic temporal dynamics, are emerging as promising solutions for processing dynamic, asynchronous signals from event-based se... 详细信息
来源: 评论
Deep Directly-Trained Spiking Neural Networks for Object Detection
Deep Directly-Trained Spiking Neural Networks for Object Det...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Qiaoyi Su Yuhong Chou Yifan Hu Jianing Li Shijie Mei Ziyang Zhang Guoqi Li School of Artificial Intelligence University of Chinese Academy of Sciences College of Artificial Intelligence Xi’an Jiaotong University Institute of Automation Chinese Academy of Sciences Department of Precision Instrument Tsinghua University School of Computer Science Peking University School of Vehicle and Mobility Tsinghua University Advanced Computing and Storage Lab Huawei Technologies Co. Ltd.
Spiking neural networks (SNNs) are brain-inspired energy-efficient models that encode information in spatiotemporal dynamics. Recently, deep SNNs trained directly have shown great success in achieving high performance...
来源: 评论
Test-Time Training-Free Domain Adaptation
Test-Time Training-Free Domain Adaptation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yongxiang Feng Weihua He Kaichao You Bing Liu Ziyang Zhang Yaoyuan Wang Minglei Li Yihang Lou Jiawei Li Guoqi Li Jianxing Liao Advanced Computing and Storage Lab Huawei Technologies Co. Ltd. School of Electronics Engineering and Computer Science Peking University China Language & Speech Innovation Lab Huawei Technologies Co. Ltd. GoTen AI Lab Department of Intelligent Vision Huawei Technologies Co. Ltd. China Department of Production Automation Development Huawei Technologies Co. Ltd. China Institute of Automation Chinese Academy of Sciences China
Deploying deep learning models to new environments is very challenging. Domain adaptation (DA) is a promising paradigm to solve the problem by collecting and adapting to unlabeled data in new environments. Though rese... 详细信息
来源: 评论
Deep Directly-Trained Spiking Neural Networks for Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Su, Qiaoyi Chou, Yuhong Hu, Yifan Li, Jianing Mei, Shijie Zhang, Ziyang Li, Guoqi School of Artificial Intelligence University of Chinese Academy of Sciences China College of Artificial Intelligence Xi'an Jiaotong University China Department of Precision Instrument Tsinghua University China School of Computer Science Peking University China School of Vehicle and Mobility Tsinghua University China Advanced Computing and Storage Lab Huawei Technologies Co Ltd. China Institute of Automation Chinese Academy of Sciences China
Spiking neural networks (SNNs) are brain-inspired energy-efficient models that encode information in spatiotemporal dynamics. Recently, deep SNNs trained directly have shown great success in achieving high performance... 详细信息
来源: 评论
A unified theory of information transfer and causal relation
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Yang Hou, Hedong Wang, Yaoyuan Zhang, Ziyang Sun, Pei Department of Psychology Tsinghua Laboratory of Brain and Intelligence Tsinghua University Beijing100084 China UFR de Mathematiques Universite de Paris Paris75013 France Department of Psychology Tsinghua Brain and Intelligence Lab Tsinghua University Beijing100084 China Laboratory of Advanced Computing and Storage Central Research Institute 2012 Laboratories Huawei Technologies Co. Ltd. Beijing100084 China
Information transfer between coupled stochastic dynamics, measured by transfer entropy and information flow, is suggested as a physical process underlying the causal relation of systems. While information transfer ana... 详细信息
来源: 评论