咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 40 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 14 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 6 篇 电气工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 信息与通信工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 建筑学
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 20 篇 理学
    • 11 篇 数学
    • 7 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 3 篇 化学
    • 2 篇 天文学
    • 2 篇 系统科学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学

主题

  • 4 篇 deep neural netw...
  • 4 篇 thermal conducti...
  • 2 篇 complex networks
  • 2 篇 self-supervised ...
  • 2 篇 information theo...
  • 2 篇 first-principles...
  • 2 篇 amorphous materi...
  • 2 篇 dynamics
  • 1 篇 interfacial ther...
  • 1 篇 stacking faults
  • 1 篇 lithium compound...
  • 1 篇 neuronal dynamic...
  • 1 篇 natural language...
  • 1 篇 phonons
  • 1 篇 lattice-boltzman...
  • 1 篇 deep learning
  • 1 篇 low-buckled two-...
  • 1 篇 random graphs
  • 1 篇 instruments
  • 1 篇 task analysis

机构

  • 10 篇 laboratory of ad...
  • 6 篇 department of ps...
  • 6 篇 advanced computi...
  • 4 篇 institute of hig...
  • 4 篇 department of el...
  • 3 篇 pengcheng labora...
  • 3 篇 peng cheng labor...
  • 2 篇 hefei advanced c...
  • 2 篇 advanced computi...
  • 2 篇 center for high ...
  • 2 篇 international re...
  • 2 篇 peking universit...
  • 2 篇 institute of aut...
  • 2 篇 advanced computi...
  • 2 篇 institute of aut...
  • 2 篇 school of electr...
  • 2 篇 university of ch...
  • 2 篇 department of co...
  • 2 篇 state key labora...
  • 2 篇 department of ps...

作者

  • 10 篇 zhang ziyang
  • 8 篇 tian yang
  • 8 篇 sun pei
  • 5 篇 guo qinghai
  • 5 篇 wang yaoyuan
  • 4 篇 qinghai guo
  • 4 篇 tang yushun
  • 4 篇 gang zhang
  • 4 篇 he zhihai
  • 4 篇 ziyang zhang
  • 3 篇 wu-xing zhou
  • 3 篇 pei sun
  • 3 篇 hou hedong
  • 3 篇 yang tian
  • 3 篇 guofeng xie
  • 3 篇 chen shuoshuo
  • 3 篇 li guoqi
  • 2 篇 cheng-wei wu
  • 2 篇 weng kangyu
  • 2 篇 yushun tang

语言

  • 39 篇 英文
  • 1 篇 其他
检索条件"机构=Advanced Computing and Storage Laboratory"
40 条 记 录,以下是1-10 订阅
排序:
SpikingMiniLM: energy-efficient spiking transformer for natural language understanding
收藏 引用
Science China(Information Sciences) 2024年 第10期67卷 115-128页
作者: Jiayu ZHANG Jiangrong SHEN Zeke WANG Qinghai GUO Rui YAN Gang PAN Huajin TANG College of Computer Science and Technology Zhejiang University The State Key Lab of Brain-Machine Intelligence Zhejiang University Collaborative Innovation Center of Artificial Intelligence Zhejiang University Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. College of Computer Science and Technology Zhejiang University of Technology MOE Frontier Science Center for Brain Science and Brain-Machine Integration Zhejiang University
In the era of large-scale pretrained models, artificial neural networks(ANNs) have excelled in natural language understanding(NLU) tasks. However, their success often necessitates substantial computational resourc... 详细信息
来源: 评论
Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
收藏 引用
IEEE Transactions on Multimedia 2024年 1-12页
作者: Tang, Yushun Chen, Shuoshuo Kan, Zhehan Zhang, Yi Guo, Qinghai He, Zhihai Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. LT China
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. ... 详细信息
来源: 评论
Thermal transport in lithium-ion battery: A micro perspective for thermal management
收藏 引用
Frontiers of physics 2022年 第1期17卷 143-153页
作者: Changqing Xiang Cheng-Wei Wu Wu-Xing Zhou Guofeng Xie Gang Zhang College of Information Science and Engineering Jishou UniversityJishou416000China School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and TechnologyXiangtan411201China Institute of High Performance Computing A*STAR Singapore138632Singapore
In recent years, lithium ion (Li-ion) batteries have served as significant power sources in portable electronic devices and electric vehicles because of their high energy density and rate capability. There are growing... 详细信息
来源: 评论
Cooperative structure of Li/Ni mixing and stacking faults for achieving high-capacity Co-free Li-rich oxides
收藏 引用
Journal of Energy Chemistry 2024年 第8期95卷 315-324,I0007页
作者: Zhen Wu Yu-Han Zhang Hao Wang Zewen Liu Xudong Zhang Xin Dai Kunyang Zou Xiaoming Lou Xuechen Hu Lijing Ma Yan Liu Yongning Liu State Key Laboratory for Mechanical Behavior of Materials Xi’an Jiaotong UniversityXi’an 710049ShaanxiChina Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao 266101ShandongChina Hefei Advanced Computing Center Operation Management Corp Ltd Hefei 230088AnhuiChina Center for High Performance Computing Network Information CenterXi’an Jiaotong UniversityXi’an 710049ShaanxiChina Wuhan Dongfeng Motor Corporation Ltd Wuhan 430056HubeiChina School of Materials Science and Intelligent Engineering Nanjing UniversitySuzhou 215163JiangsuChina Key Laboratory of MEMS of the Ministry of Education Southeast UniversityNanjing 210096JiangsuChina International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi’an Jiaotong UniversityXi’an 710049ShaanxiChina
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high ***,they commonly face severe structural instability and poor electrochemical activit... 详细信息
来源: 评论
Explicit Mutual Information Maximization for Self-Supervised Learning
Explicit Mutual Information Maximization for Self-Supervised...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lele Chang Peilin Liu Qinghai Guo Fei Wen School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd Shenzhen China
Recently, self-supervised learning (SSL) has been extensively studied. Theoretically, mutual information maximization (MIM) is an optimal criterion for SSL, with a strong theoretical foundation in information theory. ... 详细信息
来源: 评论
Explicit Mutual Information Maximization for Self-Supervised Learning
arXiv
收藏 引用
arXiv 2024年
作者: Chang, Lele Liu, Peilin Guo, Qinghai Wen, Fei School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China
Recently, self-supervised learning (SSL) has been extensively studied. Theoretically, mutual information maximization (MIM) is an optimal criterion for SSL, with a strong theoretical foundation in information theory. ... 详细信息
来源: 评论
Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Yushun Chen, Shuoshuo Kan, Zhehan Zhang, Yi Guo, Qinghai He, Zhihai The Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China The Pengcheng Lab Shenzhen China The Advanced Computing and Storage Laboratory Huawei Technologies Co. LTD China
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. ... 详细信息
来源: 评论
Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Yushun Zhang, Ce Xu, Heng Chen, Shuoshuo Cheng, Jie Leng, Luziwei Guo, Qinghai He, Zhihai Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. ... 详细信息
来源: 评论
Cross-Inferential Networks for Source-Free Unsupervised Domain Adaptation
Cross-Inferential Networks for Source-Free Unsupervised Doma...
收藏 引用
IEEE International Conference on Image Processing
作者: Yushun Tang Qinghai Guo Zhihai He Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China Pengcheng Laboratory Shenzhen China
One central challenge in source-free unsupervised domain adaptation (UDA) is the lack of an effective approach to evaluate the prediction results of the adapted network model in the target domain. To address this chal...
来源: 评论
CROSS-INFERENTIAL NETWORKS FOR SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Yushun Guo, Qinghai He, Zhihai Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China Pengcheng Laboratory Shenzhen China
One central challenge in source-free unsupervised domain adaptation (UDA) is the lack of an effective approach to evaluate the prediction results of the adapted network model in the target domain. To address this chal... 详细信息
来源: 评论