咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 40 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 14 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 6 篇 电气工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 信息与通信工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 建筑学
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 20 篇 理学
    • 11 篇 数学
    • 7 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 3 篇 化学
    • 2 篇 天文学
    • 2 篇 系统科学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学

主题

  • 4 篇 deep neural netw...
  • 4 篇 thermal conducti...
  • 2 篇 complex networks
  • 2 篇 self-supervised ...
  • 2 篇 information theo...
  • 2 篇 first-principles...
  • 2 篇 amorphous materi...
  • 2 篇 dynamics
  • 1 篇 interfacial ther...
  • 1 篇 stacking faults
  • 1 篇 lithium compound...
  • 1 篇 neuronal dynamic...
  • 1 篇 natural language...
  • 1 篇 phonons
  • 1 篇 lattice-boltzman...
  • 1 篇 deep learning
  • 1 篇 low-buckled two-...
  • 1 篇 random graphs
  • 1 篇 instruments
  • 1 篇 task analysis

机构

  • 10 篇 laboratory of ad...
  • 6 篇 department of ps...
  • 6 篇 advanced computi...
  • 4 篇 institute of hig...
  • 4 篇 department of el...
  • 3 篇 pengcheng labora...
  • 3 篇 peng cheng labor...
  • 2 篇 hefei advanced c...
  • 2 篇 advanced computi...
  • 2 篇 center for high ...
  • 2 篇 international re...
  • 2 篇 peking universit...
  • 2 篇 institute of aut...
  • 2 篇 advanced computi...
  • 2 篇 institute of aut...
  • 2 篇 school of electr...
  • 2 篇 university of ch...
  • 2 篇 department of co...
  • 2 篇 state key labora...
  • 2 篇 department of ps...

作者

  • 10 篇 zhang ziyang
  • 8 篇 tian yang
  • 8 篇 sun pei
  • 5 篇 guo qinghai
  • 5 篇 wang yaoyuan
  • 4 篇 qinghai guo
  • 4 篇 tang yushun
  • 4 篇 gang zhang
  • 4 篇 he zhihai
  • 4 篇 ziyang zhang
  • 3 篇 wu-xing zhou
  • 3 篇 pei sun
  • 3 篇 hou hedong
  • 3 篇 yang tian
  • 3 篇 guofeng xie
  • 3 篇 chen shuoshuo
  • 3 篇 li guoqi
  • 2 篇 cheng-wei wu
  • 2 篇 weng kangyu
  • 2 篇 yushun tang

语言

  • 39 篇 英文
  • 1 篇 其他
检索条件"机构=Advanced Computing and Storage Laboratory"
40 条 记 录,以下是11-20 订阅
排序:
CROSS-INFERENTIAL NETWORKS FOR SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Yushun Guo, Qinghai He, Zhihai Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China Pengcheng Laboratory Shenzhen China
One central challenge in source-free unsupervised domain adaptation (UDA) is the lack of an effective approach to evaluate the prediction results of the adapted network model in the target domain. To address this chal... 详细信息
来源: 评论
Cross-Inferential Networks for Source-Free Unsupervised Domain Adaptation
Cross-Inferential Networks for Source-Free Unsupervised Doma...
收藏 引用
IEEE International Conference on Image Processing
作者: Yushun Tang Qinghai Guo Zhihai He Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China Pengcheng Laboratory Shenzhen China
One central challenge in source-free unsupervised domain adaptation (UDA) is the lack of an effective approach to evaluate the prediction results of the adapted network model in the target domain. To address this chal...
来源: 评论
Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation
Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptat...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yushun Tang Ce Zhang Heng Xu Shuoshuo Chen Jie Cheng Luziwei Leng Qinghai Guo Zhihai He Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China Pengcheng Laboratory Shenzhen China
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. ...
来源: 评论
Explicit Mutual Information Maximization for Self-Supervised Learning
arXiv
收藏 引用
arXiv 2024年
作者: Chang, Lele Liu, Peilin Guo, Qinghai Wen, Fei School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. Shenzhen China
Recently, self-supervised learning (SSL) has been extensively studied. Theoretically, mutual information maximization (MIM) is an optimal criterion for SSL, with a strong theoretical foundation in information theory. ... 详细信息
来源: 评论
Tsdat: An Open-Source Data Standardization Framework for Marine Energy and Beyond
Tsdat: An Open-Source Data Standardization Framework for Mar...
收藏 引用
OCEANS
作者: Carina Lansing Maxwell Levin Chitra Sivaraman Rebecca Fao Frederick Driscoll Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory Richland U.S.A. Water Power Energy Conversion & Storage Systems National Renewable Energy Laboratory Golden U.S.A.
Many organizations are tasked with the collection and processing of large quantities of data from various measurement devices. Data reported from these sources are often not interoperable with datasets and software us... 详细信息
来源: 评论
Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Yushun Chen, Shuoshuo Kan, Zhehan Zhang, Yi Guo, Qinghai He, Zhihai The Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen China The Pengcheng Lab Shenzhen China The Advanced Computing and Storage Laboratory Huawei Technologies Co. LTD China
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. ... 详细信息
来源: 评论
Statistical physics of deep neural networks: Initialization toward optimal channels
收藏 引用
Physical Review Research 2023年 第2期5卷 023023-023023页
作者: Kangyu Weng Aohua Cheng Ziyang Zhang Pei Sun Yang Tian Tsien Excellence in Engineering Program Tsinghua University Beijing 100084 China Laboratory of Advanced Computing and Storage Central Research Institute 2012 Laboratories Huawei Technologies Co. Ltd. Beijing 100084 China Department of Psychology & Tsinghua Laboratory of Brain and Intelligence Tsinghua University Beijing 100084 China
In deep learning, neural networks serve as noisy channels between input data and its latent representation. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal perfo... 详细信息
来源: 评论
Abnormal Thermal Conductivity Increase in β-Ga2O3 by an Unconventional Bonding Mechanism Using Machine-Learning Potential
SSRN
收藏 引用
SSRN 2024年
作者: Zhou, Wu-Xing Wu, Cheng-Wei Cao, Hao-Ran Zeng, Yu-Jia Xie, Guofeng Zhang, Gang School of Materials Science and Engineering Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan411201 China Institute of High Performance Computing A*STAR Singapore138632 Singapore
β-Ga2O3, with its ultrawide band gap (~4.9 eV) and high critical electric field, holds potential in power electronics but is limited by low thermal conductivity, which is critical to the performance and reliability b... 详细信息
来源: 评论
MDNet: Learning Monaural Speech Enhancement from Deep Prior Gradient
arXiv
收藏 引用
arXiv 2022年
作者: Li, Andong Zheng, Chengshi Zhang, Ziyang Li, Xiaodong Key Laboratory Of Noise And Vibration Research Institute Of Acoustics Chinese Academy Of Sciences Beijing China University Of Chinese Academy Of Sciences Beijing China Advanced Computing And Storage Lab Huawei Technologies Co. Ltd. Beijing China
While traditional statistical signal processing model-based methods can derive the optimal estimators relying on specific statistical assumptions, current learning-based methods further promote the performance upper b... 详细信息
来源: 评论
Enhanced High-Temperature Thermoelectric Performance by Strain Engineering in BiOCl
收藏 引用
Physical Review Applied 2022年 第1期18卷 014053-014053页
作者: Cheng-Wei Wu Xue Ren Guofeng Xie Wu-Xing Zhou Gang Zhang Ke-Qiu Chen School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan 411201 China Institute of High Performance Computing A*STAR Singapore 138632 Singapore Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
Semiconductor BiOCl has a layered structure with ultralow lattice thermal conductivity [Q.D. Gibson et al., Science 373, 1017–1022 (2021)] and has potential applications in the field of thermoelectric materials. In t... 详细信息
来源: 评论