咨询与建议

限定检索结果

文献类型

  • 183 篇 期刊文献
  • 37 篇 会议

馆藏范围

  • 220 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 65 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 48 篇 化学工程与技术
    • 16 篇 电气工程
    • 16 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 11 篇 土木工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 6 篇 动力工程及工程热...
    • 6 篇 生物工程
    • 5 篇 冶金工程
    • 5 篇 建筑学
    • 5 篇 安全科学与工程
  • 84 篇 理学
    • 38 篇 数学
    • 21 篇 物理学
    • 12 篇 化学
    • 12 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 5 篇 天文学
    • 5 篇 系统科学
  • 20 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
  • 20 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 1 篇 经济学
  • 1 篇 法学

主题

  • 8 篇 machine learning
  • 5 篇 solar cells
  • 4 篇 self-assembly
  • 3 篇 measurement inva...
  • 3 篇 deep learning
  • 3 篇 smart cities
  • 3 篇 predictive model...
  • 3 篇 stochastic syste...
  • 3 篇 data models
  • 2 篇 causal discovery
  • 2 篇 perovskite
  • 2 篇 structural prope...
  • 2 篇 computational co...
  • 2 篇 electrocatalyst
  • 2 篇 safety
  • 2 篇 metamaterials
  • 2 篇 breast cancer
  • 2 篇 defect passivati...
  • 2 篇 learning algorit...
  • 2 篇 perovskite solar...

机构

  • 30 篇 center for advan...
  • 24 篇 riken center for...
  • 9 篇 contribution: da...
  • 8 篇 ntt data mathema...
  • 7 篇 contribution: da...
  • 6 篇 contribution: me...
  • 6 篇 contribution: ​i...
  • 6 篇 graduate school ...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...

作者

  • 18 篇 zhou xiaokang
  • 13 篇 xiaokang zhou
  • 13 篇 suzuki taiji
  • 11 篇 ishikawa isao
  • 10 篇 shimizu shohei
  • 10 篇 ikeda masahiro
  • 7 篇 tamura ryo
  • 7 篇 koji tsuda
  • 7 篇 murata tomoya
  • 7 篇 tsuda koji
  • 5 篇 nitanda atsushi
  • 4 篇 mcalinn kenichir...
  • 4 篇 ryo tamura
  • 4 篇 qi lianyong
  • 4 篇 hashimoto yuka
  • 4 篇 takanashi kōsaku
  • 4 篇 jun seita
  • 4 篇 yan ke
  • 3 篇 fuss johannes
  • 3 篇 cárdenas-lópez g...

语言

  • 212 篇 英文
  • 8 篇 其他
检索条件"机构=Advanced Data Science Project"
220 条 记 录,以下是31-40 订阅
排序:
Scalable Counterfactual Distribution Estimation in Multivariate Causal Models
arXiv
收藏 引用
arXiv 2023年
作者: Pham, Thong Shimizu, Shohei Hino, Hideitsu Le, Tam Data Science and AI Innovation Research Promotion Center Shiga University Japan Center for Advanced Intelligence Project RIKEN Japan Graduate School of Data Science Shiga University Japan The Institute of Statistical Mathematics Japan
We consider the problem of estimating the counterfactual joint distribution of multiple quantities of interests (e.g., outcomes) in a multivariate causal model extended from the classical difference-in-difference desi...
来源: 评论
Finite-time analysis of globally nonstationary multi-armed bandits
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2024年 第1期25卷 5481-5536页
作者: Junpei Komiyama Edouard Fouché Junya Honda Stern School of Business New York University Institute for Program Structures and Data Organization Karlsruhe Institute of Technology Germany Department of Systems Science Graduate School of Informatics Kyoto University Japan Center for Advanced Intelligence Project RIKEN Japan
We consider nonstationary multi-armed bandit problems where the model parameters of the arms change over time. We introduce the adaptive resetting bandit (ADR-bandit), a bandit algorithm class that leverages adaptive ... 详细信息
来源: 评论
Decentralized Federated Graph Learning with Lightweight Zero Trust Architecture for Next-Generation Networking Security
收藏 引用
IEEE Journal on Selected Areas in Communications 2025年 第6期43卷 1908-1922页
作者: Zhou, Xiaokang Liang, Wei Wang, Kevin I-Kai Yada, Katsutoshi Yang, Laurence T. Ma, Jianhua Jin, Qun Kansai University Faculty of Business Data Science Osaka565-0823 Japan RIKEN Center for Advanced Intelligence Project RIKEN Tokyo103-0027 Japan Hunan University of Technology and Business School of Computer Science Changsha410205 China Xiangjiang Laboratory Changsha410205 China The University of Auckland Department of Electrical Computer and Software Engineering Auckland1010 New Zealand St. Francis Xavier University Department of Computer Science AntigonishNSB2G 2W5 Canada Hosei University Faculty of Computer and Information Sciences Chiyoda-ku102-8160 Japan Waseda University Faculty of Human Sciences Tokorozawa359-1192 Japan
The rapid development and usage of digital technologies in modern intelligent systems and applications bring critical challenges on data security and privacy. It is essential to allow cross-organizational data sharing... 详细信息
来源: 评论
Functionally Specialized Spectral Organization of the Resting Human Cortex
SSRN
收藏 引用
SSRN 2024年
作者: Bai, Wenjun Yamashita, Okito Yoshimoto, Junichiro Kyoto Japan Center for Advanced Intelligence Project RIKEN Tokyo Japan Department of Biomedical Data Science School of Medicine Fujita Health University Japan International Center for Brain Science Fujita Health University Aichi Japan
Ample studies across various neuroimaging modalities have suggested that the human cortex at rest is hierarchically organized along the spectral and functional axes. However, the relationship between the spectral and ... 详细信息
来源: 评论
Multi-agent statistical discriminative sub-trajectory mining and an application to NBA basketball
arXiv
收藏 引用
arXiv 2023年
作者: Bunker, Rory Duy, Vo Nguyen Le Tabei, Yasuo Takeuchi, Ichiro Fujii, Keisuke Graduate School of Informatics Nagoya University Japan Data-Driven Biomedical Science Team RIKEN Center for Advanced Intelligence Project Japan RIKEN Center for Advanced Intelligence Project Japan Graduate School of Engineering Mechanical Systems Engineering Nagoya University Japan PRESTO Japan Science and Technology Agency Japan
Improvements in tracking technology through optical and computer vision systems have enabled a greater understanding of the movement-based behaviour of multiple agents, including in team sports. In this study, a Multi... 详细信息
来源: 评论
DIRECT DISTRIBUTIONAL OPTIMIZATION FOR PROVABLE ALIGNMENT OF DIFFUSION MODELS
arXiv
收藏 引用
arXiv 2025年
作者: Kawata, Ryotaro Oko, Kazusato Nitanda, Atsushi Suzuki, Taiji Department of Mathematical Informatics University of Tokyo Japan Center for Advanced Intelligence Project RIKEN Japan Department of ECCS UC Berkeley United States Singapore College of Computing and Data Science Nanyang Technological University Singapore
We introduce a novel alignment method for diffusion models from distribution optimization perspectives while providing rigorous convergence guarantees. We first formulate the problem as a generic regularized loss mini... 详细信息
来源: 评论
Towards multi-dimensional explanation alignment for medical classification  24
Towards multi-dimensional explanation alignment for medical ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Lijie Hu Songning Lai Wenshuo Chen Hongru Xiao Hongbin Lin Lu Yu Jingfeng Zhang Di Wang Provable Responsible AI and Data Analytics (PRADA) Lab and King Abdullah University of Science and Technology Provable Responsible AI and Data Analytics (PRADA) Lab and King Abdullah University of Science and Technology and HKUST(GZ) Tongji University HKUST(GZ) Ant Group The University of Auckland and RIKEN Center for Advanced Intelligence Project (AIP)
The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on s...
来源: 评论
Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning
arXiv
收藏 引用
arXiv 2024年
作者: Bu, Dake Huang, Wei Han, Andi Nitanda, Atsushi Suzuki, Taiji Zhang, Qingfu Wong, Hau-San Department of Computer Science City University of Hong Kong Hong Kong Center for Advanced Intelligence Project RIKEN Japan Singapore College of Computing and Data Science Nanyang Technological University Singapore Department of Mathematical Informatics The University of Tokyo Japan
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities. Existing empirical studies have revealed a strong connection between these LLMs' impressive eme... 详细信息
来源: 评论
Integrating Large Language Models in Causal Discovery: A Statistical Causal Approach
arXiv
收藏 引用
arXiv 2024年
作者: Takayama, Masayuki Okuda, Tadahisa Pham, Thong Ikenoue, Tatsuyoshi Fukuma, Shingo Shimizu, Shohei Sannai, Akiyoshi Data Science and AI Innovation Research Promotion Center Shiga University Japan Department of Health Data Science Tokyo Medical University Graduate School of Medicine Human Health Sciences Kyoto University Japan Faculty of Data Science Shiga University Graduate School of Medicine Human Health Sciences Kyoto University Center for Advanced Intelligence Project RIKEN Japan Faculty of Data Science Shiga University Graduate School of Medicine Human Health Sciences Kyoto University Japan Graduate School of Medicine Human Health Sciences Kyoto University Department of Epidemiology Infectious Disease Control and Prevention Hiroshima University Graduate school of Biomedical and Health Sciences Japan Faculty of Data Science Shiga University Graduate School of Medicine Human Health Sciences Kyoto University Institute for the Advanced Study of Human Biology Kyoto University Center for Advanced Intelligence Project RIKEN Japan Department of Physics Kyoto University Data Science and AI Innovation Research Promotion Center Shiga University Graduate School of Engineering The University of Tokyo Center for Advanced Intelligence Project RIKEN Research Development Center for Large Language Models National Institute of Informatics Japan
In practical statistical causal discovery (SCD), embedding domain expert knowledge as constraints into the algorithm is significant for creating consistent meaningful causal models, despite the challenges in systemati... 详细信息
来源: 评论
Bayesian Causal Synthesis for Meta-Inference on Heterogeneous Treatment Effects
arXiv
收藏 引用
arXiv 2023年
作者: Sugasawa, Shonosuke Takanashi, Kōsaku McAlinn, Kenichiro Airoldi, Edoardo M. Faculty of Economics Keio University Japan RIKEN Center for Advanced Intelligence Project Japan Department of Statistics Operations and Data Science Fox School of Business Temple University United States
The estimation of heterogeneous treatment effects in the potential outcome setting is biased when there exists model misspecification or unobserved confounding. As these biases are unobservable, what model to use when... 详细信息
来源: 评论